如何在pandas中处理Excel中合并单元格的标题?

huangapple go评论86阅读模式
英文:

How to handle headers with merged cells in excel in pandas?

问题

我有这个包含物种合并单元格的Excel文件。
我想要一个数据表,其中列的名称为Specie_1_Poitn1、Specie_1_Poitn2,以此类推。

我尝试了以下方法,但这不是我想要的结果:

df = pd.read_excel("/content/drive/MyDrive/Pollens.xlsx", sheet_name="Jun")
species_pattern = "Specie_"
species_columns = [col for col in df.columns[2:] if species_pattern in str(col)]
species_columns
dfPollensJun = pd.read_excel("/content/drive/MyDrive/Pollens.xlsx",sheet_name="Jun",header = 1)
for i, species in enumerate(species_columns):
    columns = dfPollensJun.columns[i*6+2:(i+2)*6+1]
    novas_colunas = [f"{species}_{coluna}" for coluna in columns]
    dfPollensJun.rename(columns=dict(zip(columns, novas_colunas)), inplace=True)
dfPollensJun

结果如下:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 360 entries, 0 to 359
Data columns (total 20 columns):
 #   Column                       Non-Null Count  Dtype         
---  ------                       --------------  -----         
 0   Data                         360 non-null    datetime64[ns]
 1   Hour                         360 non-null    object        
 2   Specie_1_Point_1             360 non-null    int64         
 3   Specie_1_Point_2             360 non-null    int64         
 4   Specie_1_Point_3             360 non-null    int64         
 5   Specie_1_Point_4             360 non-null    int64         
 6   Specie_1_M&#233;dia               360 non-null    float64       
 7   Specie_1_Total               360 non-null    int64         
 8   Specie_2_Specie_1_Point_1.1  360 non-null    int64         
 9   Specie_2_Specie_1_Point_2.1  360 non-null    int64         
 10  Specie_2_Specie_1_Point_3.1  360 non-null    int64         
 11  Specie_2_Specie_1_Point_4.1  360 non-null    int64         
 12  Specie_2_Specie_1_M&#233;dia.1    360 non-null    float64       
 13  Specie_2_Total.1             360 non-null    int64         
 14  Specie_3_Specie_2_Point_1.2  360 non-null    int64         
 15  Specie_3_Specie_2_Point_2.2  360 non-null    int64         
 16  Specie_3_Specie_2_Point_3.2  360 non-null    int64         
 17  Specie_3_Specie_2_Point_4.2  360 non-null    int64         
 18  Specie_3_Specie_2_M&#233;dia.2    360 non-null    float64       
 19  Specie_3_Total.2             360 non-null    int64         
dtypes: datetime64[ns](1), float64(3), int64(15), object(1)
memory usage: 56.4+ KB
英文:

I Have this excel with merged cells for species.
如何在pandas中处理Excel中合并单元格的标题?

I would like to have a data table with columns named Specie_1_Poitn1, Specie_1_Poitn2, .....

How can I do this?

I tried this, but it's not what I want



df = pd.read_excel(&quot;/content/drive/MyDrive/Pollens.xlsx&quot;, sheet_name=&quot;Jun&quot;)
species_pattern = &quot;Specie_&quot;
species_columns = [col for col in df.columns[2:] if species_pattern in str(col)]
species_columns
dfPollensJun = pd.read_excel(&quot;/content/drive/MyDrive/Pollens.xlsx&quot;,sheet_name=&quot;Jun&quot;,header = 1)
for i, species in enumerate(species_columns):
    columns = dfPollensJun.columns[i*6+2:(i+2)*6+1]
    novas_colunas = [f&quot;{species}_{coluna}&quot; for coluna in columns]
    dfPollensJun.rename(columns=dict(zip(columns, novas_colunas)), inplace=True)
dfPollensJun

And I got this

&lt;class &#39;pandas.core.frame.DataFrame&#39;&gt;
RangeIndex: 360 entries, 0 to 359
Data columns (total 20 columns):
 #   Column                       Non-Null Count  Dtype         
---  ------                       --------------  -----         
 0   Data                         360 non-null    datetime64[ns]
 1   Hour                         360 non-null    object        
 2   Specie_1_Point_1             360 non-null    int64         
 3   Specie_1_Point_2             360 non-null    int64         
 4   Specie_1_Point_3             360 non-null    int64         
 5   Specie_1_Point_4             360 non-null    int64         
 6   Specie_1_M&#233;dia               360 non-null    float64       
 7   Specie_1_Total               360 non-null    int64         
 8   Specie_2_Specie_1_Point_1.1  360 non-null    int64         
 9   Specie_2_Specie_1_Point_2.1  360 non-null    int64         
 10  Specie_2_Specie_1_Point_3.1  360 non-null    int64         
 11  Specie_2_Specie_1_Point_4.1  360 non-null    int64         
 12  Specie_2_Specie_1_M&#233;dia.1    360 non-null    float64       
 13  Specie_2_Total.1             360 non-null    int64         
 14  Specie_3_Specie_2_Point_1.2  360 non-null    int64         
 15  Specie_3_Specie_2_Point_2.2  360 non-null    int64         
 16  Specie_3_Specie_2_Point_3.2  360 non-null    int64         
 17  Specie_3_Specie_2_Point_4.2  360 non-null    int64         
 18  Specie_3_Specie_2_M&#233;dia.2    360 non-null    float64       
 19  Specie_3_Total.2             360 non-null    int64         
dtypes: datetime64[ns](1), float64(3), int64(15), object(1)
memory usage: 56.4+ KB

答案1

得分: 2

Assuming your table starts at the cell A0, you can try this:

df = pd.read_excel(
    "/content/drive/MyDrive/Pollens.xlsx",
    sheet_name="Jun", index_col=[0, 1], header=[0, 1]
)

df = df.rename_axis(index=["Data", "Hour"])
df.columns = df.columns.map(lambda x: f"{x[0]}_{x[1]}")

df = df.reset_index() # optional ?
英文:

Assuming your table starts at the cell A0, you can try this :

df = pd.read_excel(
    &quot;/content/drive/MyDrive/Pollens.xlsx&quot;,
    sheet_name=&quot;Jun&quot;, index_col=[0, 1], header=[0, 1]
)

df = df.rename_axis(index=[&quot;Data&quot;, &quot;Hour&quot;])
df.columns = df.columns.map(lambda x: f&quot;{x[0]}_{x[1]}&quot;)

df = df.reset_index() # optional ?

huangapple
  • 本文由 发表于 2023年6月15日 01:37:55
  • 转载请务必保留本文链接:https://go.coder-hub.com/76476222.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定