Why does tensorflow.function (without jit_compile) speed up forward passes of a Keras model?

huangapple go评论82阅读模式
英文:

Why does tensorflow.function (without jit_compile) speed up forward passes of a Keras model?

问题

XLA可以通过使用model = tf.function(model, jit_compile=True)来启用。某些模型类型通过这种方式可以加快速度,而其他一些模型则会变慢。到目前为止,一切都很好。

但是为什么在某些情况下,model = tf.function(model, jit_compile=None)可以显著加快速度(没有使用TPU)?

jit_compile文档中说明:

> 如果为None(默认值),在TPU上运行时使用XLA编译函数,在其他设备上运行时使用常规函数执行路径。

我在两台非TPU(甚至非GPU)的机器上运行我的测试(安装了最新的TensorFlow(2.13.0))。

import timeit

import numpy as np
import tensorflow as tf

model_plain = tf.keras.applications.efficientnet_v2.EfficientNetV2S()
model_jit_compile_true = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=True)
model_jit_compile_false = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=False)
model_jit_compile_none = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)


def run(model):
    model(np.random.random(size=(1, 384, 384, 3)))


# 热身
run(model_plain)
run(model_jit_compile_true)
run(model_jit_compile_false)
run(model_jit_compile_none)

runs = 10
duration_plain = timeit.timeit(lambda: run(model_plain), number=runs) / runs
duration_jit_compile_true = timeit.timeit(lambda: run(model_jit_compile_true), number=runs) / runs
duration_jit_compile_false = timeit.timeit(lambda: run(model_jit_compile_false), number=runs) / runs
duration_jit_compile_none = timeit.timeit(lambda: run(model_jit_compile_none), number=runs) / runs

print(f"{duration_plain=}")
print(f"{duration_jit_compile_true=}")
print(f"{duration_jit_compile_false=}")
print(f"{duration_jit_compile_none=}")
duration_plain=0.53095479644835
duration_jit_compile_true=1.5860380740836262
duration_jit_compile_false=0.09831228516995907
duration_jit_compile_none=0.09407951850444078
英文:

XLA can be enabled using model = tf.function(model, jit_compile=True). Some model types are faster that way, some are slower. So far, so good.

But why can model = tf.function(model, jit_compile=None) speed things up significantly (without TPU) in some cases?

The jit_compile docs state:

> If None (default), compiles the function with XLA when running on TPU
> and goes through the regular function execution path when running on
> other devices.

I'm running my tests on two non-TPU (and even non-GPU) machines (with the latest TensorFlow (2.13.0) installed).

import timeit

import numpy as np
import tensorflow as tf

model_plain = tf.keras.applications.efficientnet_v2.EfficientNetV2S()
model_jit_compile_true = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=True)
model_jit_compile_false = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=False)
model_jit_compile_none = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)


def run(model):
    model(np.random.random(size=(1, 384, 384, 3)))


# warmup
run(model_plain)
run(model_jit_compile_true)
run(model_jit_compile_false)
run(model_jit_compile_none)

runs = 10
duration_plain = timeit.timeit(lambda: run(model_plain), number=runs) / runs
duration_jit_compile_true = timeit.timeit(lambda: run(model_jit_compile_true), number=runs) / runs
duration_jit_compile_false = timeit.timeit(lambda: run(model_jit_compile_false), number=runs) / runs
duration_jit_compile_none = timeit.timeit(lambda: run(model_jit_compile_none), number=runs) / runs

print(f"{duration_plain=}")
print(f"{duration_jit_compile_true=}")
print(f"{duration_jit_compile_false=}")
print(f"{duration_jit_compile_none=}")
duration_plain=0.53095479644835
duration_jit_compile_true=1.5860380740836262
duration_jit_compile_false=0.09831228516995907
duration_jit_compile_none=0.09407951850444078

答案1

得分: 2

但是为什么在某些情况下,使用model = tf.function(model, jit_compile=None)可以显著加快速度(无需使用TPU)?

加速主要是由于图模式,通过tf.function启用,比model_plain中使用的即时执行要快得多。

除此之外,我们还有XLA编译的次要效果,取决于计算架构。例如,当在GPU加速器下编译时,结果会有很大不同。

最后但并非最不重要的是,基准测试方法应该进行修正,以考虑到变异的影响。对于进行10次运行的使用案例来说,变异确实非常大(否则,结果将会误导或甚至相互矛盾,例如由于高变异性,XLA=None在平均情况下可能看起来更快)。为了以后参考,让我们明确指出,TensorFlow文档中的这种性能分析模式是不准确的

以下经过修正和扩展的代码片段,在Kaggle笔记本上使用GPU执行,演示了改进主要来自于图模式,而XLA编译提供了进一步的加速

import timeit

import numpy as np
import tensorflow as tf

model_plain = tf.keras.applications.efficientnet_v2.EfficientNetV2S()
model_tffunc = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)
model_jit_compile_true = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=True)
model_jit_compile_false = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=False)
model_jit_compile_none = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)

x = np.random.random(size=(1, 384, 384, 3))

def run(model):
    model(x)

# 预热
run(model_plain)
run(model_tffunc)
run(model_jit_compile_true)
run(model_jit_compile_false)
run(model_jit_compile_none)

# 基准测试
duration_plain = %timeit -o run(model_plain)
duration_tffunc = %timeit -o run(model_tffunc)
duration_jit_compile_true = %timeit -o run(model_jit_compile_true)
duration_jit_compile_false = %timeit -o run(model_jit_compile_false)
duration_jit_compile_none = %timeit -o run(model_jit_compile_none)

print(f"{str(duration_plain)=}")
print(f"{str(duration_tffunc)=}")
print(f"{str(duration_jit_compile_true)=}")
print(f"{str(duration_jit_compile_false)=}")
print(f"{str(duration_jit_compile_none)=}")

统计上,我们有:duration_plain > duration_jit_compile_false = duration_jit_compile_none = duration_tffunc > duration_jit_compile_true,如下所示的输出结果:

369 ms ± 3.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
16.1 ms ± 2.13 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
11.6 ms ± 882 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
15.9 ms ± 508 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
15.5 ms ± 450 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
str(duration_plain)='369 ms ± 3.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)'
str(duration_tffunc)='16.1 ms ± 2.13 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)'
str(duration_jit_compile_true)='11.6 ms ± 882 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)'
str(duration_jit_compile_false)='15.9 ms ± 508 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)'
str(duration_jit_compile_none)='15.5 ms ± 450 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)'

完整的示例,请参考此公共笔记本

注意:这种测量变异性的方法是有用的,但并非完全准确

英文:

> But why can model = tf.function(model, jit_compile=None) speed things up significantly (without TPU) in some cases?

The speedup is mainly due to the graph mode
enabled by tf.function, much faster than the eager execution used in model_plain.

On top of that, we have secondary effects of XLA compilation with jit_compile flag, but they depend very much on the computing architecture. For instance, the numbers would look much different when compiled under the GPU accelerator.

Last but not least, the benchmarking methodology should be corrected to take into account variation which is indeed huge for 10 runs and the use-case in question (otherwise, findings will be misleading or even contradictory, e.g. due to high variation XLA=None can look faster on average).
For future reference, let's make it clear that this profiling pattern from Tensorflow docs is inaccurate

# average runtime on 10 repetitions without variance is inaccurate
print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))

The following corrected and extended snippet, executed on Kaggle notebooks with GPU, demonstrates that improvements come mostly from the graph mode and that XLA compilation gives some further speedup.

import timeit

import numpy as np
import tensorflow as tf

model_plain = tf.keras.applications.efficientnet_v2.EfficientNetV2S()
model_tffunc = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)
model_jit_compile_true = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=True)
model_jit_compile_false = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=False)
model_jit_compile_none = tf.function(tf.keras.applications.efficientnet_v2.EfficientNetV2S(), jit_compile=None)

x = np.random.random(size=(1, 384, 384, 3))

def run(model):
    model(x)

# warmup
run(model_plain)
run(model_tffunc)
run(model_jit_compile_true)
run(model_jit_compile_false)
run(model_jit_compile_none)

# benchmarking
duration_plain = %timeit -o run(model_plain)
duration_tffunc = %timeit -o run(model_tffunc)
duration_jit_compile_true = %timeit -o run(model_jit_compile_true)
duration_jit_compile_false = %timeit -o run(model_jit_compile_false)
duration_jit_compile_none = %timeit -o run(model_jit_compile_none)

print(f"{str(duration_plain)=}")
print(f"{str(duration_tffunc)=}")
print(f"{str(duration_jit_compile_true)=}")
print(f"{str(duration_jit_compile_false)=}")
print(f"{str(duration_jit_compile_none)=}")

Statistically, we have: duration_plain > duration_jit_compile_false = duration_jit_compile_none = duration_tffunc > duration_jit_compile_true, as seen from the output:

369 ms ± 3.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
16.1 ms ± 2.13 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
11.6 ms ± 882 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
15.9 ms ± 508 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
15.5 ms ± 450 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
str(duration_plain)='369 ms ± 3.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)'
str(duration_tffunc)='16.1 ms ± 2.13 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)'
str(duration_jit_compile_true)='11.6 ms ± 882 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)'
str(duration_jit_compile_false)='15.9 ms ± 508 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)'
str(duration_jit_compile_none)='15.5 ms ± 450 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)'

For a complete example, see this public notebook.

NOTE: this way of measuring variation is useful but not fully accurate.

huangapple
  • 本文由 发表于 2023年8月9日 12:22:30
  • 转载请务必保留本文链接:https://go.coder-hub.com/76864569.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定