如何在嵌套的for循环中使用mutate创建新变量?

huangapple go评论94阅读模式
英文:

How can I use mutate to create new variables in nested for loops?

问题

我有一个数据集,其中包含唯一的参与者ID,每个参与者都由两个不同的评分者ID对许多不同的变量(这里是Q1、Q2和Q3)进行评分。我想找到一种方法来计算一个变量,该变量指示两个评分者的评分是否相差1分。以下是我正在使用的数据的简化版本:

library(tidyverse)

Participant_ID <- rep(1:3,2)
Rater_ID <- c(rep("A",3),rep("B",3))
Q1 <- c(5, 2, 1,3, 3, 4)
Q2 <- c(4, 2, 2,3, 5, 2)
Q3 <- c(4, 3, 3,3, 4, 5)

df <- tibble(Participant_ID, Rater_ID, Q1, Q2, Q3)

我可以通过使用以下代码的每个迭代来实现:

df <- df %>% group_by(Participant_ID) %>%   
mutate(Check_Q1= ifelse((abs(Q1[1]-Q1[2]) > 1), 1, 0),          
Check_Q2= ifelse((abs(Q2[1]-Q2[2]) > 1), 1, 0),          
Check_Q3= ifelse((abs(Q3[1]-Q3[2]) > 1), 1, 0)) %>% ungroup()

对于参与者1,Q1被标记为1,对于参与者2,Q2被标记为1,对于参与者3,Q1和Q3都被标记为1,因为评分之间的差异大于1。

然而,在我的真实数据中,不仅有3个"Q"变量,还有很多。此外,我希望这段代码能够在各种情况下使用,其中Q变量的数量将会改变。用户将在运行代码之前指定number_of_questions。我一直在尝试弄清楚如何使用for循环来实现这一点,但我无法弄清楚。我目前的进展如下:

number_of_questions <- 3
questions <- grep("Q", names(df), value=TRUE)

df <-  df %>% group_by(Participant_ID)

for(q in questions){
for(x in 1:number_of_questions){

    check_varname <- paste0("Check_Q",x)
    
    df <- df %>% 
      mutate(!!check_varname := ifelse((abs(get(q)[1]-get(q)[2]) > 1), 1, 0))   
}}

df <-  df %>% ungroup()

我没有收到任何错误,但输出结果不正确。它为Participant_ID 3分配了1个Q1、Q2和Q3。有人可以帮我理解我做错了什么吗?

英文:

I have a dataset with unique Participant_IDs that are each rated by two different Rater_IDs on many different variables (Q1, Q2, and Q3 here). I am trying to find a way to compute a variable which indicates whether the two raters' ratings are within 1 point of each other. Here's a simplified version of the data I'm working with:

library(tidyverse)

Participant_ID &lt;- rep(1:3,2)
Rater_ID &lt;- c(rep(&quot;A&quot;,3),rep(&quot;B&quot;,3))
Q1 &lt;- c(5, 2, 1,3, 3, 4)
Q2 &lt;- c(4, 2, 2,3, 5, 2)
Q3 &lt;- c(4, 3, 3,3, 4, 5)

df &lt;- tibble(Participant_ID, Rater_ID, Q1, Q2, Q3)

I am able to do this by spelling out each iteration of the code using below:

df &lt;- df %&gt;% group_by(Participant_ID) %&gt;%   
mutate(Check_Q1= ifelse((abs(Q1[1]-Q1[2]) &gt; 1), 1, 0),          
Check_Q2= ifelse((abs(Q2[1]-Q2[2]) &gt; 1), 1, 0),          
Check_Q3= ifelse((abs(Q3[1]-Q3[2]) &gt; 1), 1, 0)) %&gt;% ungroup()

Q1 is flagged (assigned a 1) for participant 1, Q2 is flagged for participant 2, and both Q1 and Q3 are flagged for participant 3, as the ratings have a difference &gt; 1.

However, in my real data, there are not only 3 "Q" variables, there are many. Plus, I want this code to be used in a variety of situations where the number of Q variables will change. The user will specify the number_of_questions before running the code. I have been trying to figure out how to do this with a for loop but I cannot figure it out. This is as far as I've gotten:

number_of_questions &lt;- 3
questions &lt;- grep(&quot;Q&quot;, names(df), value=TRUE)

df &lt;-  df %&gt;% group_by(Participant_ID)

for(q in questions){
for(x in 1:number_of_questions){

    check_varname &lt;- paste0(&quot;Check_Q&quot;,x)
    
    df &lt;- df %&gt;% 
      mutate(!!check_varname := ifelse((abs(get(q)[1]-get(q)[2]) &gt; 1), 1, 0))   
}}

df &lt;-  df %&gt;% ungroup()

I don't get any errors, but the output is not correct. It is assigning a 1 to Q1, Q2, and Q3 for Participant_ID 3. Can anyone help me understand what I'm doing wrong?

答案1

得分: 4

你可以使用across函数和.names函数来实现这个目标。

df %>%
  mutate(across(starts_with("Q"), ~ +(abs(.[1] - .[2]) > 1), .names = "Check_{.col}"), .by = Participant_ID)

输出结果如下:

  Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2 Check_Q3
           <int> <chr>    <dbl> <dbl> <dbl>    <dbl>    <dbl>    <dbl>
1              1 A            5     4     4        1        0        0
2              2 A            2     2     3        0        1        0
3              3 A            1     2     3        1        0        1
4              1 B            3     3     3        1        0        0
5              2 B            3     5     4        0        1        0
6              3 B            4     2     5        1        0        1

across函数允许你指定多个问题,例如:

# 连续的问题
number_of_questions <- 2
qcols <- paste0("Q", seq_len(number_of_questions))

df %>%
  mutate(across(qcols, ~ +(abs(.x[1] - .x[2]) > 1), .names = "Check_{.col}"), .by = Participant_ID)

#  Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2
#            <int> <chr>    <dbl> <dbl> <dbl>    <int>    <int>
# 1              1 A            5     4     4        1        0
# 2              2 A            2     2     3        0        1
# 3              3 A            1     2     3        1        0
# 4              1 B            3     3     3        1        0
# 5              2 B            3     5     4        0        1
# 6              3 B            4     2     5        1        0

# 非连续的问题,可以这样指定列:
number_of_questions <- c(2, 6, 8)
qcols <- paste0("Q", number_of_questions)

(注意我假设所有问题都以"Q"开头)

英文:

You can do this using across with the .names function.

df %&gt;%
  mutate(across(starts_with(&quot;Q&quot;), ~ +(abs(.[1] - .[2]) &gt; 1), # thanks @r2evans for improved code
                .names = &quot;Check_{.col}&quot;), .by = Participant_ID)

Output:

  Participant_ID Rater_ID    Q1    Q2    Q3 Check_Q1 Check_Q2 Check_Q3
           &lt;int&gt; &lt;chr&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;
1              1 A            5     4     4        1        0        0
2              2 A            2     2     3        0        1        0
3              3 A            1     2     3        1        0        1
4              1 B            3     3     3        1        0        0
5              2 B            3     5     4        0        1        0
6              3 B            4     2     5        1        0        1

across will allow you to specify a variable numbers of questions, for instance:

# consecutive questions
number_of_questions &lt;- 2
qcols &lt;- paste0(&quot;Q&quot;, seq_len(number_of_questions))

df %&gt;%
  mutate(across(qcols, ~ +(abs(.x[1] - .x[2]) &gt; 1), 
                .names = &quot;Check_{.col}&quot;), .by = Participant_ID)

#  Participant_ID Rater_ID    Q1    Q2    Q3 Check_Q1 Check_Q2
#            &lt;int&gt; &lt;chr&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;    &lt;int&gt;    &lt;int&gt;
# 1              1 A            5     4     4        1        0
# 2              2 A            2     2     3        0        1
# 3              3 A            1     2     3        1        0
# 4              1 B            3     3     3        1        0
# 5              2 B            3     5     4        0        1
# 6              3 B            4     2     5        1        0

# Alternative for non consecutive questions, 
# specify columns this way:
number_of_questions &lt;- c(2,6,8)
qcols &lt;- paste0(&quot;Q&quot;, number_of_questions)

(Note I assumed all questions started with "Q")

答案2

得分: 2

可能更高效和可读的方法是重新调整数据,使得每个问题在行上,评分者在列上:

df_long <- df %>% 
  pivot_longer(-c(Participant_ID, Rater_ID)) %>% 
  pivot_wider(names_from = Rater_ID, values_from = value)

# 结果如下:
#   Participant_ID name  A B
#   <int>          <chr> <dbl> <dbl>
# 1 1              Q1    5     3
# 2 1              Q2    4     3
# 3 1              Q3    4     3
# 4 2              Q1    2     3
# 5 2              Q2    2     5
# 6 2              Q3    3     4
# 7 3              Q1    1     4
# 8 3              Q2    2     2
# 9 3              Q3    3     5

从那里,很容易创建一个检查列:

```R
df_long %>% 
  mutate(check = abs(A - B) > 1)

# 结果如下:
#   Participant_ID name  A B check
#   <int>          <chr> <dbl> <dbl> <lgl>
# 1 1              Q1    5     3 TRUE 
# 2 1              Q2    4     3 FALSE
# 3 1              Q3    4     3 FALSE
# 4 2              Q1    2     3 FALSE
# 5 2              Q2    2     5 TRUE 
# 6 2              Q3    3     4 FALSE
# 7 3              Q1    1     4 TRUE 
# 8 3              Q2    2     2 FALSE
# 9 3              Q3    3     5 TRUE 

然后可以将其转换为更宽的格式:

```R
df_long %>% 
  mutate(check = abs(A - B) > 1) %>% 
  select(-c(A, B)) %>% 
  pivot_wider(names_from = name, values_from = check, names_prefix = 'check_')

# 结果如下:
#   Participant_ID check_Q1 check_Q2 check_Q3
#   <int>          <lgl>    <lgl>    <lgl>   
# 1 1              TRUE     FALSE    FALSE   
# 2 2              FALSE    TRUE     FALSE   
# 3 3              TRUE     FALSE    TRUE    
英文:

It may be more efficient and/or readable to reshape the data so that each question is on the rows, and the raters are on the columns:

df_long &lt;- df %&gt;% 
  pivot_longer(-c(Participant_ID, Rater_ID)) %&gt;% 
  pivot_wider(names_from = Rater_ID, values_from = value)

  Participant_ID name      A     B
           &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt;
1              1 Q1        5     3
2              1 Q2        4     3
3              1 Q3        4     3
4              2 Q1        2     3
5              2 Q2        2     5
6              2 Q3        3     4
7              3 Q1        1     4
8              3 Q2        2     2
9              3 Q3        3     5

From there, it's easy to create a check column:

df_long %&gt;% 
  mutate(check = abs(A - B) &gt; 1)

  Participant_ID name      A     B check
           &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;lgl&gt;
1              1 Q1        5     3 TRUE 
2              1 Q2        4     3 FALSE
3              1 Q3        4     3 FALSE
4              2 Q1        2     3 FALSE
5              2 Q2        2     5 TRUE 
6              2 Q3        3     4 FALSE
7              3 Q1        1     4 TRUE 
8              3 Q2        2     2 FALSE
9              3 Q3        3     5 TRUE 

And this could be pivoted into a wider format:

df_long %&gt;% 
  mutate(check = abs(A - B) &gt; 1) %&gt;% 
  select(-c(A, B)) %&gt;% 
  pivot_wider(names_from = name, values_from = check, names_prefix = &#39;check_&#39;)

  Participant_ID check_Q1 check_Q2 check_Q3
           &lt;int&gt; &lt;lgl&gt;    &lt;lgl&gt;    &lt;lgl&gt;   
1              1 TRUE     FALSE    FALSE   
2              2 FALSE    TRUE     FALSE   
3              3 TRUE     FALSE    TRUE    

huangapple
  • 本文由 发表于 2023年8月9日 04:36:38
  • 转载请务必保留本文链接:https://go.coder-hub.com/76863058.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定