如何在嵌套的for循环中使用mutate创建新变量?

huangapple go评论118阅读模式
英文:

How can I use mutate to create new variables in nested for loops?

问题

我有一个数据集,其中包含唯一的参与者ID,每个参与者都由两个不同的评分者ID对许多不同的变量(这里是Q1、Q2和Q3)进行评分。我想找到一种方法来计算一个变量,该变量指示两个评分者的评分是否相差1分。以下是我正在使用的数据的简化版本:

  1. library(tidyverse)
  2. Participant_ID <- rep(1:3,2)
  3. Rater_ID <- c(rep("A",3),rep("B",3))
  4. Q1 <- c(5, 2, 1,3, 3, 4)
  5. Q2 <- c(4, 2, 2,3, 5, 2)
  6. Q3 <- c(4, 3, 3,3, 4, 5)
  7. df <- tibble(Participant_ID, Rater_ID, Q1, Q2, Q3)

我可以通过使用以下代码的每个迭代来实现:

  1. df <- df %>% group_by(Participant_ID) %>%
  2. mutate(Check_Q1= ifelse((abs(Q1[1]-Q1[2]) > 1), 1, 0),
  3. Check_Q2= ifelse((abs(Q2[1]-Q2[2]) > 1), 1, 0),
  4. Check_Q3= ifelse((abs(Q3[1]-Q3[2]) > 1), 1, 0)) %>% ungroup()

对于参与者1,Q1被标记为1,对于参与者2,Q2被标记为1,对于参与者3,Q1和Q3都被标记为1,因为评分之间的差异大于1。

然而,在我的真实数据中,不仅有3个"Q"变量,还有很多。此外,我希望这段代码能够在各种情况下使用,其中Q变量的数量将会改变。用户将在运行代码之前指定number_of_questions。我一直在尝试弄清楚如何使用for循环来实现这一点,但我无法弄清楚。我目前的进展如下:

  1. number_of_questions <- 3
  2. questions <- grep("Q", names(df), value=TRUE)
  3. df <- df %>% group_by(Participant_ID)
  4. for(q in questions){
  5. for(x in 1:number_of_questions){
  6. check_varname <- paste0("Check_Q",x)
  7. df <- df %>%
  8. mutate(!!check_varname := ifelse((abs(get(q)[1]-get(q)[2]) > 1), 1, 0))
  9. }}
  10. df <- df %>% ungroup()

我没有收到任何错误,但输出结果不正确。它为Participant_ID 3分配了1个Q1、Q2和Q3。有人可以帮我理解我做错了什么吗?

英文:

I have a dataset with unique Participant_IDs that are each rated by two different Rater_IDs on many different variables (Q1, Q2, and Q3 here). I am trying to find a way to compute a variable which indicates whether the two raters' ratings are within 1 point of each other. Here's a simplified version of the data I'm working with:

  1. library(tidyverse)
  2. Participant_ID &lt;- rep(1:3,2)
  3. Rater_ID &lt;- c(rep(&quot;A&quot;,3),rep(&quot;B&quot;,3))
  4. Q1 &lt;- c(5, 2, 1,3, 3, 4)
  5. Q2 &lt;- c(4, 2, 2,3, 5, 2)
  6. Q3 &lt;- c(4, 3, 3,3, 4, 5)
  7. df &lt;- tibble(Participant_ID, Rater_ID, Q1, Q2, Q3)

I am able to do this by spelling out each iteration of the code using below:

  1. df &lt;- df %&gt;% group_by(Participant_ID) %&gt;%
  2. mutate(Check_Q1= ifelse((abs(Q1[1]-Q1[2]) &gt; 1), 1, 0),
  3. Check_Q2= ifelse((abs(Q2[1]-Q2[2]) &gt; 1), 1, 0),
  4. Check_Q3= ifelse((abs(Q3[1]-Q3[2]) &gt; 1), 1, 0)) %&gt;% ungroup()

Q1 is flagged (assigned a 1) for participant 1, Q2 is flagged for participant 2, and both Q1 and Q3 are flagged for participant 3, as the ratings have a difference &gt; 1.

However, in my real data, there are not only 3 "Q" variables, there are many. Plus, I want this code to be used in a variety of situations where the number of Q variables will change. The user will specify the number_of_questions before running the code. I have been trying to figure out how to do this with a for loop but I cannot figure it out. This is as far as I've gotten:

  1. number_of_questions &lt;- 3
  2. questions &lt;- grep(&quot;Q&quot;, names(df), value=TRUE)
  3. df &lt;- df %&gt;% group_by(Participant_ID)
  4. for(q in questions){
  5. for(x in 1:number_of_questions){
  6. check_varname &lt;- paste0(&quot;Check_Q&quot;,x)
  7. df &lt;- df %&gt;%
  8. mutate(!!check_varname := ifelse((abs(get(q)[1]-get(q)[2]) &gt; 1), 1, 0))
  9. }}
  10. df &lt;- df %&gt;% ungroup()

I don't get any errors, but the output is not correct. It is assigning a 1 to Q1, Q2, and Q3 for Participant_ID 3. Can anyone help me understand what I'm doing wrong?

答案1

得分: 4

你可以使用across函数和.names函数来实现这个目标。

  1. df %>%
  2. mutate(across(starts_with("Q"), ~ +(abs(.[1] - .[2]) > 1), .names = "Check_{.col}"), .by = Participant_ID)

输出结果如下:

  1. Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2 Check_Q3
  2. <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
  3. 1 1 A 5 4 4 1 0 0
  4. 2 2 A 2 2 3 0 1 0
  5. 3 3 A 1 2 3 1 0 1
  6. 4 1 B 3 3 3 1 0 0
  7. 5 2 B 3 5 4 0 1 0
  8. 6 3 B 4 2 5 1 0 1

across函数允许你指定多个问题,例如:

  1. # 连续的问题
  2. number_of_questions <- 2
  3. qcols <- paste0("Q", seq_len(number_of_questions))
  4. df %>%
  5. mutate(across(qcols, ~ +(abs(.x[1] - .x[2]) > 1), .names = "Check_{.col}"), .by = Participant_ID)
  6. # Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2
  7. # <int> <chr> <dbl> <dbl> <dbl> <int> <int>
  8. # 1 1 A 5 4 4 1 0
  9. # 2 2 A 2 2 3 0 1
  10. # 3 3 A 1 2 3 1 0
  11. # 4 1 B 3 3 3 1 0
  12. # 5 2 B 3 5 4 0 1
  13. # 6 3 B 4 2 5 1 0
  14. # 非连续的问题,可以这样指定列:
  15. number_of_questions <- c(2, 6, 8)
  16. qcols <- paste0("Q", number_of_questions)

(注意我假设所有问题都以"Q"开头)

英文:

You can do this using across with the .names function.

  1. df %&gt;%
  2. mutate(across(starts_with(&quot;Q&quot;), ~ +(abs(.[1] - .[2]) &gt; 1), # thanks @r2evans for improved code
  3. .names = &quot;Check_{.col}&quot;), .by = Participant_ID)

Output:

  1. Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2 Check_Q3
  2. &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
  3. 1 1 A 5 4 4 1 0 0
  4. 2 2 A 2 2 3 0 1 0
  5. 3 3 A 1 2 3 1 0 1
  6. 4 1 B 3 3 3 1 0 0
  7. 5 2 B 3 5 4 0 1 0
  8. 6 3 B 4 2 5 1 0 1

across will allow you to specify a variable numbers of questions, for instance:

  1. # consecutive questions
  2. number_of_questions &lt;- 2
  3. qcols &lt;- paste0(&quot;Q&quot;, seq_len(number_of_questions))
  4. df %&gt;%
  5. mutate(across(qcols, ~ +(abs(.x[1] - .x[2]) &gt; 1),
  6. .names = &quot;Check_{.col}&quot;), .by = Participant_ID)
  7. # Participant_ID Rater_ID Q1 Q2 Q3 Check_Q1 Check_Q2
  8. # &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;int&gt; &lt;int&gt;
  9. # 1 1 A 5 4 4 1 0
  10. # 2 2 A 2 2 3 0 1
  11. # 3 3 A 1 2 3 1 0
  12. # 4 1 B 3 3 3 1 0
  13. # 5 2 B 3 5 4 0 1
  14. # 6 3 B 4 2 5 1 0
  15. # Alternative for non consecutive questions,
  16. # specify columns this way:
  17. number_of_questions &lt;- c(2,6,8)
  18. qcols &lt;- paste0(&quot;Q&quot;, number_of_questions)

(Note I assumed all questions started with "Q")

答案2

得分: 2

可能更高效和可读的方法是重新调整数据,使得每个问题在行上,评分者在列上:

  1. df_long <- df %>%
  2. pivot_longer(-c(Participant_ID, Rater_ID)) %>%
  3. pivot_wider(names_from = Rater_ID, values_from = value)
  4. # 结果如下:
  5. # Participant_ID name A B
  6. # <int> <chr> <dbl> <dbl>
  7. # 1 1 Q1 5 3
  8. # 2 1 Q2 4 3
  9. # 3 1 Q3 4 3
  10. # 4 2 Q1 2 3
  11. # 5 2 Q2 2 5
  12. # 6 2 Q3 3 4
  13. # 7 3 Q1 1 4
  14. # 8 3 Q2 2 2
  15. # 9 3 Q3 3 5
  16. 从那里,很容易创建一个检查列:
  17. ```R
  18. df_long %>%
  19. mutate(check = abs(A - B) > 1)
  20. # 结果如下:
  21. # Participant_ID name A B check
  22. # <int> <chr> <dbl> <dbl> <lgl>
  23. # 1 1 Q1 5 3 TRUE
  24. # 2 1 Q2 4 3 FALSE
  25. # 3 1 Q3 4 3 FALSE
  26. # 4 2 Q1 2 3 FALSE
  27. # 5 2 Q2 2 5 TRUE
  28. # 6 2 Q3 3 4 FALSE
  29. # 7 3 Q1 1 4 TRUE
  30. # 8 3 Q2 2 2 FALSE
  31. # 9 3 Q3 3 5 TRUE
  32. 然后可以将其转换为更宽的格式:
  33. ```R
  34. df_long %>%
  35. mutate(check = abs(A - B) > 1) %>%
  36. select(-c(A, B)) %>%
  37. pivot_wider(names_from = name, values_from = check, names_prefix = 'check_')
  38. # 结果如下:
  39. # Participant_ID check_Q1 check_Q2 check_Q3
  40. # <int> <lgl> <lgl> <lgl>
  41. # 1 1 TRUE FALSE FALSE
  42. # 2 2 FALSE TRUE FALSE
  43. # 3 3 TRUE FALSE TRUE
英文:

It may be more efficient and/or readable to reshape the data so that each question is on the rows, and the raters are on the columns:

  1. df_long &lt;- df %&gt;%
  2. pivot_longer(-c(Participant_ID, Rater_ID)) %&gt;%
  3. pivot_wider(names_from = Rater_ID, values_from = value)
  4. Participant_ID name A B
  5. &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt;
  6. 1 1 Q1 5 3
  7. 2 1 Q2 4 3
  8. 3 1 Q3 4 3
  9. 4 2 Q1 2 3
  10. 5 2 Q2 2 5
  11. 6 2 Q3 3 4
  12. 7 3 Q1 1 4
  13. 8 3 Q2 2 2
  14. 9 3 Q3 3 5

From there, it's easy to create a check column:

  1. df_long %&gt;%
  2. mutate(check = abs(A - B) &gt; 1)
  3. Participant_ID name A B check
  4. &lt;int&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;lgl&gt;
  5. 1 1 Q1 5 3 TRUE
  6. 2 1 Q2 4 3 FALSE
  7. 3 1 Q3 4 3 FALSE
  8. 4 2 Q1 2 3 FALSE
  9. 5 2 Q2 2 5 TRUE
  10. 6 2 Q3 3 4 FALSE
  11. 7 3 Q1 1 4 TRUE
  12. 8 3 Q2 2 2 FALSE
  13. 9 3 Q3 3 5 TRUE

And this could be pivoted into a wider format:

  1. df_long %&gt;%
  2. mutate(check = abs(A - B) &gt; 1) %&gt;%
  3. select(-c(A, B)) %&gt;%
  4. pivot_wider(names_from = name, values_from = check, names_prefix = &#39;check_&#39;)
  5. Participant_ID check_Q1 check_Q2 check_Q3
  6. &lt;int&gt; &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt;
  7. 1 1 TRUE FALSE FALSE
  8. 2 2 FALSE TRUE FALSE
  9. 3 3 TRUE FALSE TRUE

huangapple
  • 本文由 发表于 2023年8月9日 04:36:38
  • 转载请务必保留本文链接:https://go.coder-hub.com/76863058.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定