将ArrayType列聚合以获取另一个ArrayType列,无需使用UDF。

huangapple go评论70阅读模式
英文:

Aggregate ArrayType column to get another ArrayType column without UDF

问题

我想做的是找到lis列的中位数值,但是要按某些列分组。就像我们在数字列上使用*percentile_approx()*一样,但这里我希望对每个组的联合列表计算中位数。

期望的输出是:

  1. df1 = df.groupBy('department').agg(desired_function(col('lis')).alias('lis_median'))

给出以下结果:

  1. +----------+----------+
  2. |department|lis_median|
  3. +----------+----------+
  4. | Sales| 3|
  5. | Finance| 6|
  6. +----------+----------+

我尝试过这样做:

  1. df1 = df.groupBy('department').agg(collect_list(col('lis')).alias('lis_median'))

至少可以得到分组后的列表,但它只生成了一个列表的列表。

我想找到一种实现这一目标的方法。我不想使用UDF,因为担心执行速度问题。

英文:

I have a dataframe like this, that has one ArrayType column

  1. simpleData = [("202305","Sales","NY",[1,2,3]),
  2. ("202306","Sales","NY",[4,2,3]),
  3. ("202305","Sales","CA",[4,5,3]),
  4. ("202306","Finance","CA",[4,5,6]),
  5. ("202305","Finance","NY",[5,6,7]),
  6. ("202306","Finance","NY",[6,7,8]),
  7. ]
  8. schema = ["month","department","state","lis"]
  9. df = spark.createDataFrame(data=simpleData, schema = schema)

What I would like to do is find the median value of the lis column, but grouped by some columns. Pretty much like what we would do with percentile_approx() over a numeric column, but here I want that to be done such that the median is computed on the unioned list for each group.

Desired output:

  1. df1 = df.groupBy('department').agg(desired_function(col('lis')).alias('lis_median'))

gives

  1. +----------+----------+
  2. |department|lis_median|
  3. +----------+----------+
  4. | Sales| 3|
  5. | Finance| 6|
  6. +----------+----------+

I tried doing

  1. df1 = df.groupBy('department').agg(collect_list(col('lis')).alias('lis_median'))

to atleast get the aggregated list over the group, but it only generates a list of list.

I'd like some way to implement this. I dont want to use UDF due to execution speed concerns

答案1

得分: 1

尝试使用数组的高阶函数,即 flattenarray_sort

  • 如果数组的大小是偶数,则从中间值和中间值 - 1/2 获取中位数的值。
  • 如果数组大小是奇数,则将中值作为中位数。

示例:

  1. simpleData = [("202305", "Sales", "NY", [1, 2, 3]),
  2. ("202306", "Sales", "NY", [4, 2, 3]),
  3. ("202305", "Sales", "CA", [4, 5, 3]),
  4. ("202306", "Finance", "CA", [4, 5, 6]),
  5. ("202305", "Finance", "NY", [5, 6, 7]),
  6. ("202306", "Finance", "NY", [6, 7, 8]),
  7. ]
  8. schema = ["month", "department", "state", "lis"]
  9. df = spark.createDataFrame(data=simpleData, schema=schema)
  10. df.groupBy("department").agg(flatten(collect_set(col("lis"))).alias("cs")).\
  11. withColumn('col', array_sort(expr('filter(cs, x -> x is not null)'))).\
  12. withColumn('lis_median', when(size(col('cs')) % 2 == 0,
  13. (expr('col[int(size(cs)/2)]') + expr('col[int(size(cs)/2)-1]'))/2
  14. ).otherwise(expr('col[int(size(cs)/2)]'))).\
  15. drop(*['col', 'cs']).\
  16. show(10, False)

结果如下:

  1. +----------+----------+
  2. |department|lis_median|
  3. +----------+----------+
  4. |Sales |3.0 |
  5. |Finance |6.0 |
  6. +----------+----------+

注意:这是代码的翻译,不包括解释或其他内容。

英文:

Try with higher order functions for array i.e. flatten,array_sort for this case.

  • if the size of array is even then get the median value from midvalue + midvalue -1/2
  • if size of array is odd then get the mid value as the median

Example:

  1. simpleData = [("202305","Sales","NY",[1,2,3]),
  2. ("202306","Sales","NY",[4,2,3]),
  3. ("202305","Sales","CA",[4,5,3]),
  4. ("202306","Finance","CA",[4,5,6]),
  5. ("202305","Finance","NY",[5,6,7]),
  6. ("202306","Finance","NY",[6,7,8]),
  7. ]
  8. schema = ["month","department","state","lis"]
  9. df = spark.createDataFrame(data=simpleData, schema = schema)
  10. df.groupBy("department").agg(flatten(collect_set(col("lis"))).alias("cs")).\
  11. withColumn('col', array_sort(expr('filter(cs, x -> x is not null)'))).\
  12. withColumn('lis_median', when(size(col('cs')) % 2 == 0,
  13. (expr('col[int(size(cs)/2)]') + expr('col[int(size(cs)/2)-1]'))/2
  14. ).otherwise(expr('col[int(size(cs)/2)]'))).\
  15. drop(*['col','cs']).\
  16. show(10,False)
  17. #+----------+----------+
  18. #|department|lis_median|
  19. #+----------+----------+
  20. #|Sales |3.0 |
  21. #|Finance |6.0 |
  22. #+----------+----------+

答案2

得分: 1

我同意 @notNull,将列表展开并根据大小获取中位数。
以下是你也可以遵循的一种方法。
你可以使用 posexplode 函数,该函数提供列表的位置和值,
然后按如下方式进行聚合并直接找到中位数。

  1. display(df.selectExpr("*", "posexplode(lis) as (pos, lis_value)").groupBy('department').agg(median("lis_value").alias('lis_median')))

将ArrayType列聚合以获取另一个ArrayType列,无需使用UDF。

英文:

I agree with @notNull, flatten the list and get median according to the size.
Below is one of the approaches you can also follow.
You can use posexplode function which gives position and value of that list,
and do aggregate and find median directly as below.

  1. display(df.selectExpr("*", "posexplode(lis) as (pos, lis_value)").groupBy('department').agg(median("lis_value").alias('lis_median')))

将ArrayType列聚合以获取另一个ArrayType列,无需使用UDF。

huangapple
  • 本文由 发表于 2023年7月27日 21:23:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/76780212.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定