将Pyspark Dataframe转换为字典不起作用。

huangapple go评论121阅读模式
英文:

Converting Pyspark Dataframe to Dictionary is not working

问题

以下是您要翻译的内容:

我有一个在Salesforce中使用Databricks加载数据的需求。我正在使用simple_salesforce库来加载数据。由于Salesforce接受字典格式的数据,我需要将pyspark数据框转换为字典格式,但它失败了,如下所示。

from pyspark.sql.types import StructType, StructField, StringType, IntegerType
data2 = [("Test_Conv1", "testmailconv1@yopmail.com", "Olivia", "A", '3000000000'),
         ("Test_Conv2", "testmailconv2@yopmail.com", "Jack", "B", 4000000000),
         ("Test_Conv3", "testmailconv3@yopmail.com", "Williams", "C", 5000000000),
         ("Test_Conv4", "testmailconv4@yopmail.com", "Jones", "D", 6000000000),
         ("Test_Conv5", "testmailconv5@yopmail.com", "Brown", None, 9000000000)]
schema = StructType([ \
    StructField("LastName", StringType(), True), \
    StructField("Email", StringType(), True), \
    StructField("FirstName", StringType(), True), \
    StructField("MiddleName", StringType(), True), \
    StructField("Phone", StringType(), True)])
df = spark.createDataFrame(data=data2, schema=schema)

它在下面这行失败:

df_contact = df.rdd.map(lambda row: row.asDict()).collect()

错误消息如下:

py4j.security.Py4JSecurityException: Method public org.apache.spark.rdd.RDD org.apache.spark.api.java.JavaRDD.rdd() is not whitelisted on class class org.apache.spark.api.java.JavaRDD

加载到目标:

sf.bulk.Contact.insert(df_contact, batch_size=20000, use_serial=True)

请注意,上述内容是您提供的代码和错误消息的翻译。

英文:

I have a requirment to load the data in Salesforce using Databricks. I am using simple_salesforce library to load the data. As Salesforce accepts data in dictionary format I need to convert the pyspark dataframe to dictionary and it is failing as below.

from pyspark.sql.types import StructType,StructField, StringType, IntegerType
data2 = [("Test_Conv1","testmailconv1@yopmail.com","Olivia","A",'3000000000'),
("Test_Conv2","testmailconv2@yopmail.com","Jack","B",4000000000),
("Test_Conv3","testmailconv3@yopmail.com","Williams","C",5000000000),
("Test_Conv4","testmailconv4@yopmail.com","Jones","D",6000000000),
("Test_Conv5","testmailconv5@yopmail.com","Brown",None,9000000000)]
schema = StructType([ \
StructField("LastName",StringType(),True), \
StructField("Email",StringType(),True), \
StructField("FirstName",StringType(),True), \
StructField("MiddleName", StringType(), True), \
StructField("Phone", StringType(), True)])
df = spark.createDataFrame(data=data2,schema=schema)

It is failing in the below line

df_contact = df.rdd.map(lambda row: row.asDict()).collect()

Error message

py4j.security.Py4JSecurityException: Method public org.apache.spark.rdd.RDD org.apache.spark.api.java.JavaRDD.rdd() is not whitelisted on class class org.apache.spark.api.java.JavaRDD

Loading to Target

sf.bulk.Contact.insert(df_contact,batch_size=20000,use_serial=True)

答案1

得分: 1

你遇到的错误似乎与PySpark和simple_salesforce库之间的交互有关。似乎是df.rdd.map(lambda row: row.asDict()).collect()操作引起了错误。

您可以直接将PySpark DataFrame转换为Pandas DataFrame,然后再转换为字典,而不是将其转换为RDD然后映射为字典。以下是应该可以正常工作的代码的更新版本:

from pyspark.sql.types import StructType, StructField, StringType
import pandas as pd

data2 = [
    ("Test_Conv1", "testmailconv1@yopmail.com", "Olivia", "A", '3000000000'),
    ("Test_Conv2", "testmailconv2@yopmail.com", "Jack", "B", '4000000000'),
    ("Test_Conv3", "testmailconv3@yopmail.com", "Williams", "C", '5000000000'),
    ("Test_Conv4", "testmailconv4@yopmail.com", "Jones", "D", '6000000000'),
    ("Test_Conv5", "testmailconv5@yopmail.com", "Brown", None, '9000000000')
]

schema = StructType([
    StructField("LastName", StringType(), True),
    StructField("Email", StringType(), True),
    StructField("FirstName", StringType(), True),
    StructField("MiddleName", StringType(), True),
    StructField("Phone", StringType(), True)
])

df = spark.createDataFrame(data=data2, schema=schema)

# Convert PySpark DataFrame to Pandas DataFrame
pandas_df = df.toPandas()

# Convert Pandas DataFrame to dictionary
df_contact = pandas_df.to_dict(orient='records')

# Load data into Salesforce
sf.bulk.Contact.insert(df_contact, batch_size=20000, use_serial=True)

通过将DataFrame转换为Pandas DataFrame,您可以轻松使用to_dict()方法将其转换为可以由simple_salesforce库接受并插入Salesforce的字典列表。

英文:

The error you encountered seems to be related to the interaction between PySpark and the simple_salesforce library. It appears that the df.rdd.map(lambda row: row.asDict()).collect() operation is causing the error.

Instead of converting the PySpark DataFrame to an RDD and then mapping it to a dictionary, you can directly convert the DataFrame to a Pandas DataFrame and then to a dictionary. Here's an updated version of your code that should work:

from pyspark.sql.types import StructType, StructField, StringType
import pandas as pd

data2 = [
    ("Test_Conv1", "testmailconv1@yopmail.com", "Olivia", "A", '3000000000'),
    ("Test_Conv2", "testmailconv2@yopmail.com", "Jack", "B", '4000000000'),
    ("Test_Conv3", "testmailconv3@yopmail.com", "Williams", "C", '5000000000'),
    ("Test_Conv4", "testmailconv4@yopmail.com", "Jones", "D", '6000000000'),
    ("Test_Conv5", "testmailconv5@yopmail.com", "Brown", None, '9000000000')
]

schema = StructType([
    StructField("LastName", StringType(), True),
    StructField("Email", StringType(), True),
    StructField("FirstName", StringType(), True),
    StructField("MiddleName", StringType(), True),
    StructField("Phone", StringType(), True)
])

df = spark.createDataFrame(data=data2, schema=schema)

# Convert PySpark DataFrame to Pandas DataFrame
pandas_df = df.toPandas()

# Convert Pandas DataFrame to dictionary
df_contact = pandas_df.to_dict(orient='records')

# Load data into Salesforce
sf.bulk.Contact.insert(df_contact, batch_size=20000, use_serial=True)

By converting the DataFrame to a Pandas DataFrame, you can easily use the to_dict() method to convert it to a list of dictionaries that can be accepted by the simple_salesforce library for insertion into Salesforce.

答案2

得分: -1

是的,使用将 PySpark DataFrame 转换为 Pandas DataFrame,然后再转换为字典的方法,在处理大量数据时可能会引入性能瓶颈。将整个 PySpark DataFrame 转换为 Pandas DataFrame 需要将所有数据加载到单台计算机的内存中,当数据集大小超过可用内存时,这可能会成为限制。

在这种情况下,通常建议利用 PySpark 的分布式计算能力来高效处理大型数据集。而不是将 DataFrame 转换为 Pandas DataFrame,你可以在 PySpark 中探索选项,将数据转换并加载到 Salesforce 中。

例如,你可以使用 PySpark 中的 foreachPartition() 函数来迭代 DataFrame 的分区,并将每个分区发送到 Salesforce 进行插入。这允许并行处理和高效的内存利用,因为数据以较小的块进行处理。

以下是演示这种方法的示例:

from simple_salesforce import Salesforce

# 创建与 Salesforce 的连接
sf = Salesforce(username='your_username', password='your_password', security_token='your_security_token')

# 定义一个将数据插入 Salesforce 的函数
def insert_to_salesforce(records):
    # 初始化 Salesforce 批量 API
    bulk = sf.bulk.Contact

    # 将每个记录转换为字典并插入 Salesforce
    for record in records:
        bulk.insert(record)

# 迭代分区并将数据插入 Salesforce
df.foreachPartition(insert_to_salesforce)

通过使用 foreachPartition(),你可以在多个分区之间并行处理数据,这有助于在处理大量数据时提高性能。

请注意,根据你的具体要求和你的 Spark 集群的能力,你可能需要进一步优化代码或考虑其他策略,比如批处理或 Salesforce 提供的分布式数据加载工具,以高效处理极大型数据集。

英文:

Yes, using the approach of converting a PySpark DataFrame to a Pandas DataFrame and then to a dictionary may introduce performance bottlenecks when dealing with large volumes of data. Converting the entire PySpark DataFrame to a Pandas DataFrame requires bringing all the data into the memory of a single machine, which can become a limitation when the dataset size exceeds the available memory.

In such cases, it's generally recommended to utilize distributed computing capabilities of PySpark to process large datasets efficiently. Instead of converting the DataFrame to a Pandas DataFrame, you can explore options within PySpark itself to transform the data and load it into Salesforce.

For example, you can use the foreachPartition() function in PySpark to iterate over partitions of the DataFrame and send each partition to Salesforce for insertion. This allows for parallel processing and efficient memory utilization, as the data is processed in smaller chunks.

Here's an example that demonstrates this approach:

from simple_salesforce import Salesforce

# Create a connection to Salesforce
sf = Salesforce(username='your_username', password='your_password', security_token='your_security_token')

# Define a function to insert data into Salesforce
def insert_to_salesforce(records):
    # Initialize the Salesforce bulk API
    bulk = sf.bulk.Contact

    # Convert each record to a dictionary and insert it into Salesforce
    for record in records:
        bulk.insert(record)

# Iterate over partitions and insert data into Salesforce
df.foreachPartition(insert_to_salesforce)

By using foreachPartition(), you can process the data in parallel across multiple partitions, which can help improve performance when dealing with large volumes of data.

Keep in mind that depending on your specific requirements and the capabilities of your Spark cluster, you may need to further optimize the code or consider other strategies like batch processing or distributed data loading tools provided by Salesforce to handle extremely large datasets efficiently.

[ChatGPT answer]

huangapple
  • 本文由 发表于 2023年6月5日 23:13:00
  • 转载请务必保留本文链接:https://go.coder-hub.com/76407811.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定