PLF: [S <: S->S] 子类型示例提示

huangapple go评论55阅读模式
英文:

PLF: [S <: S->S] Subtyping Example Hint

问题

在编程语言基础课程中,有一个名为 formal_subtype_instances_tf_2d 的练习,要求证明是否存在一种类型 S,使得 S <: S->S 成立。该问题包含一个提示,建议断言该陈述的一般性,并且证明应该按照类型的归纳进行。关于问题的具体细节以及简单类型 λ 演算的实现细节,可以在这里找到:https://softwarefoundations.cis.upenn.edu/plf-current/Sub.html#lab372

我认为不存在这样的类型,因为我认为这个 STLC 实现不允许递归类型。我已成功断言 S <: S->Top。在类型 S 上进行归纳时,我陷入了 S = S1->S2 的情况,一直在努力发展出一个矛盾。这是否是正确的方法,还是我需要不同的断言?

英文:

In Programming Language Foundations, there is an exercise formal_subtype_instances_tf_2d, which is asking to prove whether there is a type S such that S &lt;: S-&gt;S. The problem contains a hint that a generalization of the statement should be asserted, and the proof should proceed by induction on a type. The full specifics of the problem and of the simply-typed lambda calculus implementation can be found here: https://softwarefoundations.cis.upenn.edu/plf-current/Sub.html#lab372

I believe there is no such type because I don't believe this implementation of STLC allows recursive types. I have successfully asserted S &lt;: S-&gt;Top. Proceeding by induction on S, I am stuck on the case where S = S1-&gt;S2 and have been struggling to develop a contradiction. Is this the correct approach, or do I need a different assertion?

答案1

得分: 0

解决方案似乎是对整个陈述进行更广泛的概括。

我使用的概括是 forall S T, S <: {T -> S} -> False。通过对 S(带有依赖的 T)进行归纳来证明它。您可以使用 sub_inversion_arrow 在除一种情况外的所有情况下找到矛盾,即当 S = S1->S2 时。

S = S1->S2 的证明是通过对假设进行反演完成的。这会产生三种情况,可以通过以下方法解决:

  1. 从假设和重写中得出。
  2. 在新生成的假设中应用 sub_inversion_arrow,然后注意到 S2 <: S1->S2(这可以通过开发一个关于子类型关系的引理,当 S1->S2 <: T1->T2 时,然后通过子类型关系的传递性来完成),然后剩下的就是假设。
  3. 从假设中得出。

通过在假设中应用这个概括定理,可以得出对练习的证明。

英文:

The solution seems to be to actually make a broader generalization of the entire statement.

forall S T, S &lt;: &lt;{ T -&gt; S }&gt; -&gt; False is the generalization I used. It is proved by induction on S (with dependent T). You can use sub_inversion_arrow to find a contradiction in all but one case, when S = S1-&gt;S2.

The S = S1-&gt;S2 is proved by inversion on the hypothesis. This creates three cases which can be solved by the following:

  1. Follows from hypotheses and rewriting.
  2. Applying sub_inversion_arrow in one of the newly generated hypotheses, and then noticing that S2 &lt;: S1-&gt;S2 (this can be done by developing a lemma about the subtyping relations when S1-&gt;S2 &lt;: T1-&gt;T2, and then by transitivity of subtyping), then the rest follows from hypotheses.
  3. Follows from hypotheses.

The proof for the exercise follows by applying this generalization theorem in the hypothesis.

huangapple
  • 本文由 发表于 2023年7月20日 08:55:22
  • 转载请务必保留本文链接:https://go.coder-hub.com/76726032.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定