将类型变量设置为定义内的具体类型。

huangapple go评论57阅读模式
英文:

Set type Variable to a concrete type inside a definition

问题

在Coq中,我们定义如下:

Section bin_trees.

Variable T: Type.

Inductive bin_tree :=
  | Leaf : bin_tree
  | Node : T -> bin_tree -> bin_tree -> bin_tree.

bin_trees部分内,我想定义一个示例树:

Definition my_nat_bin_tree := Node 3 Leaf Leaf.

但这是不允许的:

Error: In environment
T : Type
The term "3" has type "nat"
while it is expected to have type 
"T".

我是否可以将T设置为某个具体的类型(在这种情况下是nat)以用于单个定义的目的?类似这样的方式:

Definition my_nat_bin_tree := @Node (T:=nat) 3 Leaf Leaf.

或者也许有一种技巧可以在定义后关闭并重新打开部分,以便我可以引用T变量而无需重新声明它?

英文:

Say that we define in Coq:

Section bin_trees.

Variable T: Type.

Inductive bin_tree :=
  | Leaf : bin_tree
  | Node : T ->  bin_tree -> bin_tree -> bin_tree.

Within bin_trees section, I would like to define some sample tree:

Definition my_nat_bin_tree := Node 3 Leaf Leaf.

But this is not allowed:

Error: In environment
T : Type
The term "3" has type "nat"
while it is expected to have type 
"T".

Can I set T to some concrete type (in this case nat) for the purposes of a single definition? Something like:

Definition my_nat_bin_tree := @Node (T:=nat) 3 Leaf Leaf.

Or maybe there is a trick to close and reopen the section after the definitions so that I can refer to T variable without redeclaring it?

答案1

得分: 1

你可能想关闭这一节。但这并不意味着你必须在每个地方都提供显式的 T。

这段代码展示了如何使用 Arguments 命令将 T 设为隐式。

Section bin_trees.
Variable T : Type.
Inductive bin_tree :=
  | Leaf : bin_tree
  | Node : T -> bin_tree -> bin_tree -> bin_tree.
End bin_trees.

(* 在 section 外部,T 是 Leaf、Node 和 bin_tree 的参数。 *)
Check Leaf : forall T : Type, bin_tree T.
Check Node : forall T : Type, T -> bin_tree T -> bin_tree T -> bin_tree T.

(* 你可以告诉 Coq 从上下文中推断出 T。 *)
Arguments Node {T}.
Arguments Leaf {T}.

(* 由于 3 是 nat,所以 T 没有其他选择。 *)
Definition my_nat_bin_tree := Node 3 Leaf Leaf.
Check my_nat_bin_tree : bin_tree nat.

Definition my_bool_bin_tree := Node false (Node true Leaf Leaf) Leaf.
Check my_bool_bin_tree : bin_tree bool.

(* 现在如果想要一个类型为 nat 的 Leaf *)
Fail Definition my_nat_leaf := Leaf. (* 不工作:
- ?T: 无法推断出 Leaf 的隐式参数 T,其类型为 "Type"。 *)
(* 但我们可以在本地使用 @ 操作符使 T 变为非显式 *)
Definition my_nat_leaf := @Leaf nat.
Check my_nat_leaf : bin_tree nat.
英文:

You probably want to close the section anyway. But that does not mean you have to provide an explicit T everywhere.

This code shows how to use the Arguments command to make T implicit.

Section bin_trees.
Variable T : Type.
Inductive bin_tree :=
  | Leaf : bin_tree
  | Node : T ->  bin_tree -> bin_tree -> bin_tree.
End bin_trees.

(* Outside the section, T is a parameter for Leaf, Node and bin_tree. *)
Check Leaf : forall T : Type, bin_tree T.
Check Node : forall T : Type, T -> bin_tree T -> bin_tree T -> bin_tree T.

(* You can tell coq to deduce T from the context. *)
Arguments Node {T}.
Arguments Leaf {T}.

(* Since 3 is in nat, there is no other choice for T. *)
Definition my_nat_bin_tree := Node 3 Leaf Leaf.
Check my_nat_bin_tree : bin_tree nat.

Definition my_bool_bin_tree := Node false (Node true Leaf Leaf) Leaf.
Check my_bool_bin_tree : bin_tree bool.

(* Now if one really wants some Leaf of type, say nat *)
Fail Definition my_nat_leaf := Leaf. (* does not work :
- ?T: Cannot infer the implicit parameter T of Leaf whose type is "Type". *)
(* But we can "unexplicit" T locally with the @ operator *)
Definition my_nat_leaf := @Leaf nat.
Check my_nat_leaf : bin_tree nat.

About the section, actually if T is not that much used you can also directly give the type as a parameter as in :

Inductive bin_tree' (T : Type) :=
  | Leaf' : bin_tree' T
  | Node' : T ->  bin_tree' T -> bin_tree' T -> bin_tree' T.

答案2

得分: 0

一个你可以使用的技巧是使用符号来在本地实例化一个定义。

Section Top.

Inductive bin_tree (T : Type) :=
  | Leaf : bin_tree T
  | Node : T -> bin_tree T -> bin_tree T -> bin_tree T.

Section bin_trees.

Variable T : Type.

Notation bin_tree := (bin_tree T).
Notation Leaf := (Leaf T).
Notation Node := (Node T).

Check bin_tree.
Check Leaf.
Check Node.

Definition my_nat_bin_tree := Top.Node _ 3 (Top.Leaf _) (Top.Leaf _).

Print my_nat_bin_tree.

End bin_trees.

Print my_nat_bin_tree.

End Top.

Print my_nat_bin_tree.
英文:

A trick you can use is to use notation to locally instanciate a definition.

Section Top.

Inductive bin_tree (T : Type) :=
  | Leaf : bin_tree T
  | Node : T ->  bin_tree T -> bin_tree T -> bin_tree T.

Section bin_trees.

Variable T : Type.

Notation bin_tree := (bin_tree T).
Notation Leaf := (Leaf T).
Notation Node := (Node T).

Check bin_tree.
Check Leaf.
Check Node.

Definition my_nat_bin_tree := Top.Node _ 3 (Top.Leaf _) (Top.Leaf _).

Print my_nat_bin_tree.

End bin_trees.

Print my_nat_bin_tree.

End Top.

Print my_nat_bin_tree.

huangapple
  • 本文由 发表于 2023年5月28日 07:25:46
  • 转载请务必保留本文链接:https://go.coder-hub.com/76349407.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定