在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

huangapple go评论78阅读模式
英文:

In Vega lite (Deneb) how do I apply a parameter list of regression types to a calculated regression line

问题

I have created a "poly" regression line for a scatterplot in vega lite similar to the below.

我已经为散点图创建了一个“poly”回归线,类似于下面的图表。

I have also created a parameter list, listing the types of regression (linear, log, etc.)

我还创建了一个参数列表,列出了回归的类型(线性、对数等)。

However, I am unable to correctly map the list so that I am able to switch between different types of regression calcs. So I am looking for some advice.

然而,我无法正确地映射该列表,以便能够在不同类型的回归计算之间切换。所以我正在寻求一些建议。

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

在下面的代码中,我尝试替换:
"method": "poly",

with

"method": {"expr": "regressionline"}

where "regressionline" is the name of my parameter list, but I dont think it is correct.

在下面的代码中,我尝试将:
"method": "poly",

替换为

"method": {"expr": "regressionline"}

其中"regressionline"是我的参数列表的名称,但我认为这不正确。

I was wondering if it is actually possible, and if there is another method.

我在想这是否真的可能,并且是否有其他方法。

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

Many thanks

非常感谢

英文:

I have created a "poly" regression line for a scatterplot in vega lite similar to the below.

I have also created a parameter list, listing the types of regression (linear, log, etc.)

However, I am unable to correctly map the list so that I am able to switch between different types of regression calcs. So I am looking for some advice.

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

In the below code, I have tried replacing:
"method": "poly",

with

"method": {"expr": "regressionline"}

where "regressionline" is the name of my parameter list, but I dont think it is correct.

I was wondering if it is actually possible, and if there is another method.

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

Many thanks

  1. {
  2. "data": {"name": "dataset"},
  3. "params": [
  4. {
  5. "name": "regressionline",
  6. "value": "linear",
  7. "bind": {
  8. "input": "radio",
  9. "options": [
  10. "linear",
  11. "log",
  12. "exp",
  13. "pow",
  14. "quad",
  15. "poly"
  16. ]
  17. }
  18. }
  19. ],
  20. "layer": [
  21. {
  22. "mark": "rect",
  23. "encoding": {
  24. "x": {
  25. "bin": {"maxbins": 20},
  26. "field": "Total Ref Estimate - RF",
  27. "title": "Total Estimate"
  28. },
  29. "y": {
  30. "bin": {"maxbins": 10},
  31. "field": "Premarket % Costs",
  32. "title": "Premarket % Costs"
  33. },
  34. "color": {
  35. "aggregate": "count",
  36. "scale": {
  37. "scheme": "goldgreen"
  38. },
  39. "legend": {
  40. "direction": "horizontal",
  41. "gradientLength": 120,
  42. "orient": "none",
  43. "legendX": 500,
  44. "legendY": 10
  45. }
  46. }
  47. }
  48. },
  49. {
  50. "mark": {
  51. "type": "point",
  52. "tooltip": true,
  53. "color": "white",
  54. "stroke": "black",
  55. "strokeWidth": 0.5,
  56. "size": 25
  57. },
  58. "encoding": {
  59. "x": {
  60. "field": "Total Ref Estimate - RF",
  61. "type": "quantitative",
  62. "axis": {
  63. "format": "$.1s",
  64. "labelFontSize": 10
  65. },
  66. "scale": {
  67. "domain": [0, 70000000]
  68. }
  69. },
  70. "y": {
  71. "field": "Premarket % Costs",
  72. "type": "quantitative",
  73. "scale": {"domain": [0, 1]},
  74. "axis": {
  75. "format": ".0%",
  76. "labelFontSize": 10
  77. }
  78. },
  79. "xOffset": {
  80. "field": "External ID"
  81. }
  82. }
  83. },
  84. {
  85. "mark": {
  86. "type": "line",
  87. "color": "firebrick",
  88. "strokeWidth": 2.5,
  89. "strokeDash": [1, 4]
  90. },
  91. "transform": [
  92. {
  93. "regression": "Premarket % Costs",
  94. "on": "Total Ref Estimate - RF",
  95. "method": "poly",
  96. "extent": [1000000, 30000000]
  97. }
  98. ],
  99. "encoding": {
  100. "x": {
  101. "field": "Total Ref Estimate - RF",
  102. "type": "quantitative"
  103. },
  104. "y": {
  105. "field": "Premarket % Costs",
  106. "type": "quantitative"
  107. }
  108. }
  109. },
  110. {
  111. "transform": [
  112. {
  113. "regression": "Premarket % Costs",
  114. "on": "Total Ref Estimate - RF",
  115. "method": "poly",
  116. "extent": [1000000, 30000000],
  117. "params": true
  118. },
  119. {
  120. "calculate": "'R²: '+format(datum.rSquared, '.2f')",
  121. "as": "R2"
  122. }
  123. ],
  124. "mark": {
  125. "type": "text",
  126. "color": "firebrick",
  127. "x": "width",
  128. "align": "right",
  129. "y": -5
  130. },
  131. "encoding": {
  132. "text": {
  133. "type": "nominal",
  134. "field": "R2"
  135. }
  136. }
  137. }
  138. ]
  139. }

答案1

得分: 1

以下对我有效。

"method": {"signal": "regressionline"},

模式引发验证错误(因为VL不明确支持信号),但这确实有效,我可以成功地在线性、二次和多项式之间切换。对于其他方法的有效性我不太确定,因为我已经有一段时间没有研究线性回归了。

英文:

The following works for me.

"method": {"signal": "regressionline"},

The schema throws a validation error (as VL doesn't support signals explicitly) but this does work and I can successfully switch between linear, quad and poly. Not sure about the validity of the other methods as I haven't looked at linear regressions in a while.

huangapple
  • 本文由 发表于 2023年7月18日 11:57:32
  • 转载请务必保留本文链接:https://go.coder-hub.com/76709441.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定