在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

huangapple go评论61阅读模式
英文:

In Vega lite (Deneb) how do I apply a parameter list of regression types to a calculated regression line

问题

I have created a "poly" regression line for a scatterplot in vega lite similar to the below.

我已经为散点图创建了一个“poly”回归线,类似于下面的图表。

I have also created a parameter list, listing the types of regression (linear, log, etc.)

我还创建了一个参数列表,列出了回归的类型(线性、对数等)。

However, I am unable to correctly map the list so that I am able to switch between different types of regression calcs. So I am looking for some advice.

然而,我无法正确地映射该列表,以便能够在不同类型的回归计算之间切换。所以我正在寻求一些建议。

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

在下面的代码中,我尝试替换:
"method": "poly",

with

"method": {"expr": "regressionline"}

where "regressionline" is the name of my parameter list, but I dont think it is correct.

在下面的代码中,我尝试将:
"method": "poly",

替换为

"method": {"expr": "regressionline"}

其中"regressionline"是我的参数列表的名称,但我认为这不正确。

I was wondering if it is actually possible, and if there is another method.

我在想这是否真的可能,并且是否有其他方法。

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

Many thanks

非常感谢

英文:

I have created a "poly" regression line for a scatterplot in vega lite similar to the below.

I have also created a parameter list, listing the types of regression (linear, log, etc.)

However, I am unable to correctly map the list so that I am able to switch between different types of regression calcs. So I am looking for some advice.

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

In the below code, I have tried replacing:
"method": "poly",

with

"method": {"expr": "regressionline"}

where "regressionline" is the name of my parameter list, but I dont think it is correct.

I was wondering if it is actually possible, and if there is another method.

在Vega Lite(Deneb)中,如何将一个回归类型参数列表应用于计算的回归线?

Many thanks

{
  "data": {"name": "dataset"},
  "params": [
    {
      "name": "regressionline",
      "value": "linear",
      "bind": {
        "input": "radio",
        "options": [
          "linear",
          "log",
          "exp",
          "pow",
          "quad",
          "poly"
        ]
      }
    }
  ],
  "layer": [
    {
      "mark": "rect",
      "encoding": {
        "x": {
          "bin": {"maxbins": 20},
          "field": "Total Ref Estimate - RF",
          "title": "Total Estimate"
        },
        "y": {
          "bin": {"maxbins": 10},
          "field": "Premarket % Costs",
          "title": "Premarket % Costs"
        },
        "color": {
          "aggregate": "count",
          "scale": {
            "scheme": "goldgreen"
          },
          "legend": {
            "direction": "horizontal",
            "gradientLength": 120,
            "orient": "none",
            "legendX": 500,
            "legendY": 10
          }
        }
      }
    },
    {
      "mark": {
        "type": "point",
        "tooltip": true,
        "color": "white",
        "stroke": "black",
        "strokeWidth": 0.5,
        "size": 25
      },
      "encoding": {
        "x": {
          "field": "Total Ref Estimate - RF",
          "type": "quantitative",
          "axis": {
            "format": "$.1s",
            "labelFontSize": 10
          },
          "scale": {
            "domain": [0, 70000000]
          }
        },
        "y": {
          "field": "Premarket % Costs",
          "type": "quantitative",
          "scale": {"domain": [0, 1]},
          "axis": {
            "format": ".0%",
            "labelFontSize": 10
          }
        },
        "xOffset": {
          "field": "External ID"
        }
      }
    },
    {
      "mark": {
        "type": "line",
        "color": "firebrick",
        "strokeWidth": 2.5,
        "strokeDash": [1, 4]
      },
      "transform": [
        {
          "regression": "Premarket % Costs",
          "on": "Total Ref Estimate - RF",
          "method": "poly",
          "extent": [1000000, 30000000]
        }
      ],
      "encoding": {
        "x": {
          "field": "Total Ref Estimate - RF",
          "type": "quantitative"
        },
        "y": {
          "field": "Premarket % Costs",
          "type": "quantitative"
        }
      }
    },
    {
      "transform": [
        {
          "regression": "Premarket % Costs",
          "on": "Total Ref Estimate - RF",
          "method": "poly",
          "extent": [1000000, 30000000],
          "params": true
        },
        {
          "calculate": "'R²: '+format(datum.rSquared, '.2f')",
          "as": "R2"
        }
      ],
      "mark": {
        "type": "text",
        "color": "firebrick",
        "x": "width",
        "align": "right",
        "y": -5
      },
      "encoding": {
        "text": {
          "type": "nominal",
          "field": "R2"
        }
      }
    }
  ]
}

答案1

得分: 1

以下对我有效。

"method": {"signal": "regressionline"},

模式引发验证错误(因为VL不明确支持信号),但这确实有效,我可以成功地在线性、二次和多项式之间切换。对于其他方法的有效性我不太确定,因为我已经有一段时间没有研究线性回归了。

英文:

The following works for me.

"method": {"signal": "regressionline"},

The schema throws a validation error (as VL doesn't support signals explicitly) but this does work and I can successfully switch between linear, quad and poly. Not sure about the validity of the other methods as I haven't looked at linear regressions in a while.

huangapple
  • 本文由 发表于 2023年7月18日 11:57:32
  • 转载请务必保留本文链接:https://go.coder-hub.com/76709441.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定