Plotly在悬停时显示缺失值

huangapple go评论114阅读模式
英文:

Plotly showing NA for values in hover over

问题

我正在尝试将ggplot2图形转换为plotly图形,似乎工作正常,但悬停时显示Tumor_Volume变量的值为NA。它还显示组变量两次:悬停截图

  1. library(ggplot2)
  2. library(plotly)
  3. mouse_data$Mouse <- as.factor(mouse_data$Mouse)
  4. mouse_data$Group <- as.factor(mouse_data$Group)
  5. p <- ggplot(mouse_data, aes(x=Day, y=Tumor_Volume, color=Group,)) +
  6. stat_summary(aes(group=Group), fun=mean, geom="line", size=1) +
  7. stat_summary(aes(group=Group), fun=mean, geom="point", size=2) +
  8. stat_summary(fun.data = mean_se, geom='errorbar', width=.5, size=0.7) +
  9. theme_classic()
  10. p
  11. ggplotly(p)

不确定如何修复这个问题,有任何帮助吗?

EDIT:由于我忘记提供样本数据,请求样本数据的代码如下:

  1. Mouse <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)
  2. Group <- c('A','A','A','B','B','B','A','A','A','B','B','B')
  3. Day <- c(1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5)
  4. Tumor_Volume <- c(1, 1.0829917, 1.2260616, 1, 1.1432288, 1.3644288,
  5. 1, 1.0551514, 1.3203255, 1, 1.3336704, 1.5578587)
  6. Weight <- c(0, -1, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1)
  7. mouse_data <- data.frame(Mouse, Group, Day, Tumor_Volume)

Mouse是老鼠编号,总共有四只老鼠,有重复的测量值

Group是组变量,有两个组:A和B

Tumor_Volume是肿瘤体积,以1.00作为基线进行转换

Weight是标准化的体重值,以第1天为0,然后查看后续天数的体重变化

EDIT2:dput(mouse_data) 输出如下:(此部分文本太长,无法全部显示,请使用代码示例中的数据代替。)

英文:

I"m trying to convert a ggplot2 graph into a plotly graph, which seems to be working fine however the hover-over shows the values for the Tumor_Volume variable as NA. It also shows the group variable twice: Screenshot of hover-over.

  1. library(ggplot2)
  2. library(plotly)
  3. mouse_data$Mouse &lt;- as.factor(mouse_data$Mouse)
  4. mouse_data$Group &lt;- as.factor(mouse_data$Group)
  5. p &lt;- ggplot(mouse_data, aes(x=Day, y=Tumor_Volume, color=Group,)) +
  6. stat_summary(aes(group=Group), fun=mean, geom=&quot;line&quot;, size=1) +
  7. stat_summary(aes(group=Group), fun=mean, geom=&quot;point&quot;, size=2) +
  8. stat_summary(fun.data = mean_se, geom=&#39;errorbar&#39;, width=.5, size=0.7) +
  9. theme_classic()
  10. p
  11. ggplotly(p)

Not sure how to fix this, any help?

EDIT: Sample data requested due to me forgetting, apologies

  1. Mouse &lt;- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)
  2. Group &lt;- c(&#39;A&#39;,&#39;A&#39;,&#39;A&#39;,&#39;B&#39;,&#39;B&#39;,&#39;B&#39;,&#39;A&#39;,&#39;A&#39;,&#39;A&#39;,&#39;B&#39;,&#39;B&#39;,&#39;B&#39;)
  3. Day &lt;- c(1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5)
  4. Tumor_Volume &lt;- c(1, 1.0829917, 1.2260616, 1, 1.1432288, 1.3644288,
  5. 1, 1.0551514, 1.3203255, 1, 1.3336704, 1.5578587)
  6. Weight &lt;- c(0, -1, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1)
  7. mouse_data &lt;- data.frame(Mouse, Group, Day, Tumor_Volume)

mouse is mouse number, four mice total with repeated measures

group is the group variable, two groups; A and B

tumor_volume tumor volume transformed with 1.00 as baseline

weight normalized weight values with day 1 at 0 and then looking at delta in weight for further days

EDIT2: dput(mouse_data) output:

  1. structure(list(Mouse = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
  2. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  3. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
  4. 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
  5. 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
  6. 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
  7. 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), levels = c(&quot;1&quot;, &quot;2&quot;, &quot;3&quot;,
  8. &quot;4&quot;, &quot;5&quot;, &quot;6&quot;), class = &quot;factor&quot;), Group = structure(c(2L, 2L,
  9. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  10. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  11. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
  12. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  13. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  14. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = c(&quot;Ionis-2&quot;,
  15. &quot;PBS&quot;), class = &quot;factor&quot;), Day = c(1, 3, 5, 7, 9, 11, 13, 15,
  16. 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17,
  17. 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
  18. 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
  19. 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,
  20. 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
  21. 27, 29, 31), Tumor_Volume = c(1, 1.08299168, 1.22606163, 1.28005149,
  22. 1.15473202, 1.77751867, 1.7775596, 1.42810373, 1.49398489, 1.73608742,
  23. 1.9960584, 2.41555584, 2.44329879, 2.83244784, 2.95047186, 3.13712572,
  24. 1, 1.14322875, 1.36442879, 1.62265073, 1.41229115, 1.69515171,
  25. 1.85693702, 2.00477197, 2.45190977, 2.81710137, 2.95579987, 3.24677192,
  26. 3.7952463, 4.672606, 4.65405432, 5.04395284, 1, 1.08678546, 1.4051892,
  27. 1.70719996, 1.91914965, 2.77444381, 2.91922649, 3.12429506, 3.08423878,
  28. 3.1993417, 3.79480258, 3.45039433, 3.97340486, 4.40332097, 4.99459949,
  29. 5.19001667, 1, 1.05515139, 1.32032553, 1.31451857, 1.36498317,
  30. 1.48691696, 1.71555664, 1.69085447, 1.40778153, 1.16562843, 1.43153217,
  31. 1.14711724, 1.00752507, 0.93548112, 0.89387479, 0.5831787, 1,
  32. 1.33367041, 1.55785873, 1.97875617, 2.58821435, 2.66654602, 3.64662179,
  33. 3.06141446, 2.84366305, 2.56583405, 2.74313995, 2.31355113, 2.2229406,
  34. 2.18822338, 1.80662598, 1.59483541, 1, 1.59580807, 1.92068763,
  35. 2.1997625, 2.03248152, 2.45503449, 2.5517737, 2.57760473, 2.40887638,
  36. 3.15143769, 3.01258129, 2.79074441, 2.5628939, 2.86507289, 2.76465271,
  37. 2.45859679), Weight = c(0, -1, -1, -1, -1, -2, -1, -1, -2, -1,
  38. -1, -2, -2, -2, -2, -2, 0, 0, 1, 1, 0, 0, 0, 0, -1, -2, -1, -1,
  39. -1, -2, -2, -1, 0, 0, 0, 0, 0, -1, -1, -1, 0, -1, -1, -1, -1,
  40. -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 2, 2, 2, 0,
  41. 0, 0, 0, 0, -1, -1, 1, 0, 1, 3, 3, 2, 3, 3, 3, 0, -1, 0, 0, 0,
  42. 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1)), row.names = c(NA, -96L), class = c(&quot;tbl_df&quot;,
  43. &quot;tbl&quot;, &quot;data.frame&quot;))

答案1

得分: 0

  1. `stat_summary`在内部计算汇总信息,所以在这种情况下(因为您正在使用`ggplotly(p)`并且想要显示汇总信息),我建议在绘图之前明确汇总,然后使用`geom_line``geom_point`代替`stat_summary`

library(dplyr)
mouse_plot <- mouse_data %>%
summarize(TV_mean = mean(Tumor_Volume),
.by = c(Day, Group))

或者对于较旧版本的dplyr:

mouse_plot <- mouse_data %>%
group_by(Day, Group) %>%
summarize(TV_mean = mean(Tumor_Volume))

p <- ggplot(mouse_plot, aes(x = Day, y = TV_mean, color = Group)) +
geom_line(size = 1) +
geom_point(size = 2) +
theme_classic()

ggplotly(p)

  1. 或者不创建新数据集:

p <- mouse_data %>%
summarize(Tumor_Volume = mean(Tumor_Volume),
.by = c(Day, Group)) %>%
ggplot(aes(x=Day, y=Tumor_Volume, color=Group)) +
geom_line(size = 1) +
geom_point(size = 2) +
theme_classic()

ggplotly(p)

  1. 无论哪种方式,都可以获得以下结果:
  2. [![enter image description here][1]][1]
英文:

stat_summary internally computes aggregates, so in this case (since you are using ggplotly(p) and want to show the aggregates) I would suggest explicitly summarizing before plotting, then using geom_line and geom_point instead of stat_summary:

  1. library(dplyr)
  2. mouse_plot &lt;- mouse_data %&gt;%
  3. summarize(TV_mean = mean(Tumor_Volume),
  4. .by = c(Day, Group))
  5. ## or for older versions of dplyr:
  6. mouse_plot &lt;- mouse_data %&gt;%
  7. group_by(Day, Group) %&gt;%
  8. summarize(TV_mean = mean(Tumor_Volume))
  9. p &lt;- ggplot(mouse_plot, aes(x = Day, y = TV_mean, color = Group)) +
  10. geom_line(size = 1) +
  11. geom_point(size = 2) +
  12. theme_classic()
  13. ggplotly(p)

Or without creating a new dataset:

  1. p &lt;- mouse_data %&gt;%
  2. summarize(Tumor_Volume = mean(Tumor_Volume),
  3. .by = c(Day, Group)) %&gt;%
  4. ggplot(aes(x=Day, y=Tumor_Volume, color=Group)) +
  5. geom_line(size = 1) +
  6. geom_point(size = 2) +
  7. theme_classic()
  8. ggplotly(p)

Either way you get:

Plotly在悬停时显示缺失值

huangapple
  • 本文由 发表于 2023年7月18日 02:32:50
  • 转载请务必保留本文链接:https://go.coder-hub.com/76707218.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定