英文:
Controlling the grid with `ggeffects::ggpredict`
问题
假设我拟合了一个具有连续预测变量的线性模型,该变量已被分组化。现在我想绘制均值结果作为连续预测变量的函数。这将是一个阶梯函数。我可以通过手动指定一个非常精细的网格并使用stats::predict()
来创建这个图表。然而,我对ggeffects::ggpredict()
是否能够实现这一点感兴趣。下面的示例图表表明使用的网格不够精细。是否有任何方法来控制网格?
model <- lm(mpg ~ cut(wt, c(0,2,4,6)), data = mtcars)
ggpredict(model, c("wt")) |> plot()
英文:
Suppose I fit a linear model with a continuous predictor that has been categorized. Now I want to make a plot of the mean outcome as a function of the continuous predictor. This would be a staircase function. I could create this manually by specifying a very fine grid and use stats::predict()
. I'm however interested in whether this is is possible with ggeffects::ggpredict()
. The plot in the example below suggests that the grid used isn't fine enough. Is there any way to control the grid?
model <- lm(mpg ~ cut(wt, c(0,2,4,6)), data = mtcars)
ggpredict(model, c("wt")) |> plot()
答案1
得分: 1
ggpredict
的界面有点不同寻常,因为你需要在传递给terms
的字符串中,使用方括号指定预测变量的范围和密度。如果你将其设置为,比如"wt [0:6 by=0.01]"
,预测值应该足够接近,以呈现为一个阶梯函数。
这是一个完整的reprex示例:
model <- lm(mpg ~ cut(wt, c(0,2,4,6)), data = mtcars)
ggeffects::ggpredict(model, terms = "wt [0:6 by=0.01]") |> plot()
创建于2023-07-10,使用 reprex v2.0.2
英文:
The interface for ggpredict
is a bit unusual, in that you specify the range and density of the predictor variables inside square brackets as part of the string passed to terms
. If you set this to, say "wt [0:6 by=0.01]"
, the predictions should be close enough together to appear as a step function.
Here's a full reprex:
model <- lm(mpg ~ cut(wt, c(0,2,4,6)), data = mtcars)
ggeffects::ggpredict(model, terms = "wt [0:6 by=0.01]") |> plot()
<sup>Created on 2023-07-10 with reprex v2.0.2</sup>
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论