ModuleNotFoundError: 在Airflow中找不到模块名称 ‘gspread’

huangapple go评论90阅读模式
英文:

ModuleNotFoundError: No module named 'gspread' in Airflow

问题

You are encountering a "ModuleNotFoundError: No module named 'gspread'" error in your Airflow DAG. This issue is related to the Python environment used by Airflow not having the 'gspread' library installed. Here's how you can resolve it:

  1. Install 'gspread' in the Airflow Environment:

    In your Docker setup, you need to make sure that the 'gspread' library is installed in the Python environment used by Airflow. You can add it to your Docker image's requirements. To do this:

    a. Open the Dockerfile used to build your Airflow image (the one mentioned as image in your Docker Compose file).

    b. Look for the section where Python packages are installed (usually using pip). It might look something like this:

    # Install additional Python packages
    RUN pip install package1 package2 ...
    

    c. Add 'gspread' to the list of packages to install:

    RUN pip install package1 package2 gspread ...
    
  2. Rebuild Your Airflow Image:

    After modifying the Dockerfile, you need to rebuild your Airflow Docker image to include the 'gspread' library. You can do this using the docker-compose build command:

    docker-compose build
    
  3. Restart Airflow:

    Once you've rebuilt the image, you should restart your Airflow containers to apply the changes:

    docker-compose up -d
    

    This will recreate the Airflow containers with the updated image that includes 'gspread.'

  4. Retry Your DAG:

    After the containers are up and running, try running your DAG again. The 'gspread' library should now be available in your Airflow environment, and the import error should be resolved.

Make sure you've followed these steps correctly, and if you encounter any issues during the process, please provide more details for further assistance.

英文:

I am running a defautl airflow image version 2.5.1 on docker and I am trying to create a DAG in order to send data to a google gsheets. I already have the credentials and I've tested it and it is ok with that. I've created an env, my OS is windows and my python version is 3.10.2. That's my code:

    from airflow import DAG
    from airflow.providers.google.common.hooks.base_google import GoogleBaseHook
    from df2gspread import df2gspread 
    import gspread
    from datetime import datetime

    default_args = {
        'owner': 'airflow',
        'start_date': datetime(2023, 1, 1)
    }

    with DAG(
        dag_id="test",
        start_date=datetime.now(),
        schedule_interval="@daily",
    ) as dag:
        
        @dag.task
        def test_dag():

            # Create a hook object
            # When using the google_cloud_default we can use 
            # hook = GoogleBaseHook()
            # Or for a deligate use: GoogleBaseHook(delegate_to='foo@bar.com')
            hook = GoogleBaseHook(gcp_conn_id='google_conn_id') 

            # Get the credentials
            credentials = hook.get_credentials()
            print(credentials)

            # Optional, set the delegate email if needed later. 
            # You need a domain wide delegate service account to use this.
            #credentials = credentials.with_subject('foo@bar.com')

            # Use the credentials to authenticate the gspread client
            gc = gspread.Client(auth=credentials)

            # # Create Spreadsheet
            gc.create('example') 
            gc.list_spreadsheet_files()
        
        
        test_dag()

And this is the docker image:

    # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME           - Docker image name used to run Airflow.
#                                Default: apache/airflow:2.5.1
# AIRFLOW_UID                  - User ID in Airflow containers
#                                Default: 50000
# AIRFLOW_PROJ_DIR             - Base path to which all the files will be volumed.
#                                Default: .
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME   - Username for the administrator account (if requested).
#                                Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD   - Password for the administrator account (if requested).
#                                Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
#                                Default: ''
#
# Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.5.1}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# For backward compatibility, with Airflow <2.3
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo "    See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo "   https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:

When I initialize airflow on localhost, I keep getting import errors on my DAG, indicating ModuleNotFoundError: No module named 'gspread'.

I've read some questions made here on stack overflow about that issue, and I've already tried creating an env, I've tried installing the library with pip install gspread, pip3 install gspread and none has worked.

答案1

得分: 0

你的问题是:Airflow的Docker镜像不包含gspread包。

这意味着当你启动Airflow的Docker镜像时,它会尝试加载你的代码,但此时你的代码尝试导入gspread,但该包未安装在Docker镜像中,因此失败。

简而言之:当使用Airflow的Docker镜像时,你只能使用Airflow提供的包和由Airflow提供的包。gspread不是Airflow提供的。

你需要做的是:创建一个名为Dockerfile的文件。

将Airflow镜像用作基础镜像(使用指令:FROM apache/airflow:2.5.1)。

然后安装gspread。使用以下指令:RUN pip install gspread

然后保存该文件并更新你的Docker Compose,以便使用你的自定义镜像而不是原始镜像。

为此,只需更新Docker Compose文件,注释掉下面的行:

image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.5.1}

然后取消注释下面的行:

build: .

如果出现任何问题,请回到这里,我们将进行必要的调整。

英文:

Your issue is: the airflow docker image does not contain the package gspread.

That means when you start the airflow docker image it tries to load your code, at that point you code tries to import gspread but it's not installed in the docker image so it fails.

In a nutshell: when using airflow docker image you can only use airflow packages and packages provided by airflow. gspread is not provided by airflow.

What you need is: create a file named Dockerfile

Use the airflow image as a base image (using the instruction: FROM apache/airflow:2.5.1)

Then install gspread. Using the following instruction: RUN pip install gspread

Then save the file and update your docker compose so it uses your custom image instead of the original image.

For that simply update the docker compose file, comment the line bellow

image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.5.1}

Then uncomment the line bellow:

build: .

In case of any issue come back here will adjust what need be.

huangapple
  • 本文由 发表于 2023年7月6日 19:59:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/76628597.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定