管理解码后的型号编号。

huangapple go评论78阅读模式
英文:

How to manage decoded model number

问题

  1. 在使用pandas改进工作的便捷性时,我们正在进行工作。
  2. 通过pandas,可以读取、写入和修改基本的Excel信息。
  3. 我想按照以下顺序生成结果,请告诉我如何操作。
  4. 我甚至不知道如何管理包含型号号码含义的信息。
  5. 这只是一个示例,但型号的数量相当大。

型号号码约定
我应该如何管理这些数据?
我尝试与JSON匹配,但没有正确地做到。
在此输入图片描述

读取型号号码数据框
在此输入图片描述

输出数据框
在此输入图片描述

英文:

We are improving the convenience of work by using pandas.
It is possible to read, write, and modify basic Excel information through pandas.
I'd like to make a result in the following order, so please help me with how to do it.
I don't even know how to manage the information that contains the meaning of the model number.
This is a sample, but the number of models is quite large.

  1. Read the data frame containing the model number in Excel.
  2. Load data containing each meaning of the model number. (JSON or ???)
  3. Decode the model number.
  4. Decoded content is made into a data frame.
  5. Save it in Excel.

Model number conventions
How should I manage this data?
I tried matching it with JSON, but I couldn't do it properly.
enter image description here

Read model number Dataframe
enter image description here

Output Dataframe
enter image description here

答案1

得分: 1

如果我正确理解您的目标,您可以使用函数来解析型号编号以获取有用的数据。然后,您可以使用 pandas 的 'apply' 方法来添加每一列。

以下是这些函数可能看起来的示例:

def parse_product_id(model_number):
    # 可以在 Python 3.10+ 中使用 match 语句替代字典
    p_id_dict = {'Q': 'QLED电视', 'N': 'NEO QLED电视'}
    if model_number[0] in p_id_dict:  
        return p_id_dict[model_number[0]]
    else:
        return '未知'

def parse_tv_region(model_number):
    region_dict = {'A': '亚洲', 'E': '欧洲', 'N': '美洲'}
    if model_number[1] in region_dict:
        return region_dict[model_number[1]]
    else:
        return '未知'

def parse_screen_size(model_number):
    return int(model_number[2:4])  # 转换为整数是可选的,取决于您的用例

# 继续编写更多函数以解析型号编号的其他部分

然后,我们对每个函数在型号编号上使用 'apply' 方法,并将其设置为数据框中的一列:

# 这是我们结果中列名与生成它们的解析函数之间的配对关系
column_functions = {'产品ID': parse_product_id, '地区': parse_tv_region, '尺寸': parse_screen_size}

# 当然,您可以单独应用每个函数,但这使用的代码更少
for col, func in column_functions.items():
    df[col] = df['型号编号'].apply(func)

我生成了一个看起来像这样的数据框:

管理解码后的型号编号。

在运行上述代码后,它看起来像这样:

管理解码后的型号编号。

英文:

If I understand your goal correctly, you can use functions to parse the model number into useful data. Then you can use pandas 'apply' to add each column.

Here's a sample of what these functions could look like

def parse_product_id(model_number):
    # Can use a match statement instead of dict in python 3.10+
    p_id_dict = {'Q': 'QLED TV', 'N': 'NEO QLED TV'}
    if model_number[0] in p_id_dict:  
        return p_id_dict[model_number[0]]
    else:
        return 'Unknown'

def parse_tv_region(model_number):
    region_dict = {'A': 'ASIA', 'E': 'EUROPE', 'N': 'AMERICA'}
    if model_number[1] in region_dict:
        return region_dict[model_number[1]]
    else:
        return 'Unknown'

def parse_screen_size(model_number):
    return int(model_number[2:4])  # Conversion to integer is optional, and depends on your use case

# Continue to write more functions to parse other parts of the model number

Then, we use the 'apply' method on the model number for each function, and set it to a column in our dataframe

# This is a pairing between the column names in our outcome, to the parsing function that generates them
column_functions = {'PRODUCT ID': parse_product_id, 'REGION': parse_tv_region, 'SIZE': parse_screen_size}

# You could of course apply each function individually, but this uses less code
for col, func in column_functions.items():
    df[col] = df['ModelNumber'].apply(func)

I generated a dataframe that looks like this

管理解码后的型号编号。

And after running the above code, it looks like this

管理解码后的型号编号。

huangapple
  • 本文由 发表于 2023年7月6日 11:43:42
  • 转载请务必保留本文链接:https://go.coder-hub.com/76625356.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定