英文:
What is the exact mathematical formulation of calculation of Mutual Information and F-Score in scikit-learn?
问题
我想了解两个指标 Mutual Information (MI) 和 F-score 在这个 scikit-learn 示例 中的确切数学表达式。文档仅陈述如下:
- 对于 MI:参考了几篇论文和维基百科页面,但没有细节。
- 对于 F-score:
英文:
I would like to know the exact mathematical formulation of the two metrics Mutual Information (MI) and F-score used in this example in scikit-learn. The documentation states only the following:
- for MI: referring to couple of papers and the wikipedia page without details.
- for F-score:
答案1
得分: 1
对于scikit-learn
中的互信息(Mutual Information,MI)和F分数(F-score)的计算,可能会根据变量是分类还是数值型而有所不同。
您可能会发现直接查看源代码有所帮助:
- 对于互信息(Mutual Information):
- 用于分类任务的:
mutual_info_classif
- 用于回归任务的:
mutual_info_regression
- 用于分类任务的:
- 对于F分数(F-score):
f_regression
希望这能帮助您。
英文:
The calculations for Mutual Information (MI) and the F-score in scikit-learn
may vary based on whether the variables are categorical or numeric.
You might find it helpful to look directly at the source code:
- For Mutual Information:
- For classification tasks:
mutual_info_classif
- For regression tasks:
mutual_info_regression
- For classification tasks:
- For the F-score:
f_regression
I hope this helps.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论