What is the exact mathematical formulation of calculation of Mutual Information and F-Score in scikit-learn?

huangapple go评论59阅读模式
英文:

What is the exact mathematical formulation of calculation of Mutual Information and F-Score in scikit-learn?

问题

我想了解两个指标 Mutual Information (MI) 和 F-score 在这个 scikit-learn 示例 中的确切数学表达式。文档仅陈述如下:

  • 对于 MI:参考了几篇论文和维基百科页面,但没有细节。
  • 对于 F-score:
  1. 使用 r_regression 计算每个回归器与目标之间的交叉相关性,如下图所示。
    What is the exact mathematical formulation of calculation of Mutual Information and F-Score in scikit-learn?
  2. 将其转换为 F 分数,然后转换为 p 值。
英文:

I would like to know the exact mathematical formulation of the two metrics Mutual Information (MI) and F-score used in this example in scikit-learn. The documentation states only the following:

  • for MI: referring to couple of papers and the wikipedia page without details.
  • for F-score:
  1. The cross correlation between each regressor and the target is computed using r_regression as:
    What is the exact mathematical formulation of calculation of Mutual Information and F-Score in scikit-learn?
  2. It is converted to an F score and then to a p-value.

答案1

得分: 1

对于scikit-learn中的互信息(Mutual Information,MI)和F分数(F-score)的计算,可能会根据变量是分类还是数值型而有所不同。

您可能会发现直接查看源代码有所帮助:

希望这能帮助您。

英文:

The calculations for Mutual Information (MI) and the F-score in scikit-learn may vary based on whether the variables are categorical or numeric.

You might find it helpful to look directly at the source code:

I hope this helps.

huangapple
  • 本文由 发表于 2023年6月26日 19:54:37
  • 转载请务必保留本文链接:https://go.coder-hub.com/76556437.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定