在CUDA GPU上执行简单的浮点数算术会得到稍微不同的答案。

huangapple go评论94阅读模式
英文:

Executing simple floating point arithmetic on CUDA GPUs gives slightly different answer

问题

我有一个非常简单的内核。

function kernel!(u, r, β::Number)
    u .= u .* β .+ r
end

显然,它可以进行令人尴尬的并行处理。我在CPU和GPU上执行它。

using Test
using CUDA
using LinearAlgebra: norm

@testset "What is my GPU doing?" begin
    N = 1024
    u = rand(N)
    u_cu = CuVector(u)
    @test Vector(u_cu) == u  # OK
    r = rand(N)
    r_cu = CuVector(r)
    @test Vector(r_cu) == r  # OK
    β = 3.0
    u .= u .* β .+ r
    u_cu .= u_cu .* β .+ r_cu
    @test_broken u == u_cu   # BROKEN
    @test norm(u - Vector(u_cu)) < 1.0e-14  # OK
    @test eltype(u_cu) === eltype(u)  # OK
end

因此,最终结果似乎具有机器epsilon左右的误差。这让我猜想其中一个正在重新排列操作,因为浮点运算不是结合的。我想让它们表现完全相同。

  1. 我如何检查是否真的是这种情况,还是其他情况?
  2. 我如何让它们产生完全相同的结果?

(也在Julia lang论坛上提出了这个问题。)

辅助问题:是否可能检查设备上广播操作的PTX/SASS?@device_code_ptx和相关功能似乎只适用于使用@cuda调用的内核。

编辑:使用FMA
评论中指出FMA可能是另一个原因。通常,使用单独的muladd指令会产生被舍入的乘法的中间结果。这可以通过使用FMA避免。因此,我运行了一些使用FMAs和旧内核的测试。


@testset "FMA vs mul and add" begin
    N = 1024
    u = rand(N)
    u_cu = CuVector(u)
    @test Vector(u_cu) == u
    r = rand(N)
    r_cu = CuVector(r)
    x = similar(u)
    x_fma = similar(x)
    x_cu = similar(u_cu)
    @test Vector(r_cu) == r
    β = 3.0
    x .= u .* β .+ r
    x_fma .= fma.(u, β, r)
    @test x_fma != x  # FMA should differ from mul and add
    @test norm(x_fma - x) < 1.0e-14  # but not too different
    x_cu .= u_cu .* β .+ r_cu
    @test Vector(x_cu) != x
    @test norm(Vector(x_cu) - x) < 1.0e-14
    x_cu_cpy = copy(x_cu)
    x_cu .= fma.(u_cu, β, r_cu)
    @test x_cu == x_cu_cpy  # GPU FMA same as separate mul and add
end
英文:

I have a very simple kernel.

function kernel!(u, r, β::Number)
    u .= u .* β .+ r
end

Clearly, it is embarrassingly parallel. I execute in on both the CPU and the GPU like so.
(You might have to run this more than once since test cases are generated randomly, but I am yet to run into an accidental pass on my machine).

using Test
using CUDA
using LinearAlgebra: norm

@testset &quot;What is my GPU doing?&quot; begin
    N = 1024
    u = rand(N)
    u_cu = CuVector(u)
    @test Vector(u_cu) == u  # OK
    r = rand(N)
    r_cu = CuVector(r)
    @test Vector(r_cu) == r  # OK
    β = 3.0
    u .= u .* β .+ r
    u_cu .= u_cu .* β .+ r_cu
    @test_broken u == u_cu   # BROKEN
    @test norm(u - Vector(u_cu)) &lt; 1.0e-14  # OK
    @test eltype(u_cu) === eltype(u)  # OK
end

So, the final result seems to have a margin of error around the machine epsilon. Which leads me to guess that one of them is reordering the operations since floating point arithmetic is not associative. I would like to get them to behave exactly the same.

  1. How can I check if reordering really is the case, or whether it is something else?
  2. How can I get them to give the exact same result?

(Also asked on the Julia lang discourse.)

Auxiliary question: is it possible to inspect PTX/SASS for broadcast operations on the device? @device_code_ptx and friends only seem to work for kernels invoked using @cuda.

Edit: using FMA

It was pointed out in the comments that FMA could be another reason. In general, using separate mul and add instructions results in an intermediate result of the multiplication that gets rounded. This can be avoided using FMA. So, I ran some tests using both FMAs and the old kernels.


@testset &quot;FMA vs mul and add&quot; begin
    N = 1024
    u = rand(N)
    u_cu = CuVector(u)
    @test Vector(u_cu) == u
    r = rand(N)
    r_cu = CuVector(r)
    x = similar(u)
    x_fma = similar(x)
    x_cu = similar(u_cu)
    @test Vector(r_cu) == r
    β = 3.0
    x .= u .* β .+ r
    x_fma .= fma.(u, β, r)
    @test x_fma != x  # FMA should differ from mul and add
    @test norm(x_fma - x) &lt; 1.0e-14  # but not too different
    x_cu .= u_cu .* β .+ r_cu
    @test Vector(x_cu) != x
    @test norm(Vector(x_cu) - x) &lt; 1.0e-14
    x_cu_cpy = copy(x_cu)
    x_cu .= fma.(u_cu, β, r_cu)
    @test x_cu == x_cu_cpy  # GPU FMA same as separate mul and add
end

答案1

得分: 1

这是一段关于使用CUDA.jl和Julia编写的代码的讨论,其中涉及到FMA(Fused Multiply-Add)和汇编代码的生成。以下是对代码和讨论的翻译:

"不是Flops的重新排序,而是FMA。CUDA.jl(至少4.0.1版)明确地将乘法和加法融合成FMA,而在Julia中,你要么使用类似@fastmath这样的东西,要么明确使用Base.fma

FMA和非融合的乘-加之间的区别在于非融合指令会导致乘法的中间结果四舍五入,因此在算术结果上会有差异。

可以使用@code_native检查生成的CPU汇编代码。在我的情况下,我发现fma.(u, beta, r)生成了一个vfmadd指令,而u .= u .* beta .+ r则没有。

可以使用CUDA.@device_code_sass检查CUDA变体的生成sass。我不太习惯阅读sass,但其中一行是这样的:

DFMA R6, R6, c[0x0][0x1b8], R8 ;

我猜这是一个双精度的FMA。将CPU版本明确使用FMA解决了这个问题。"

@testset "What is my GPU doing?" begin
    N = 1024
    u = rand(N)
    u_cu = CuVector(u)
    @test Vector(u_cu) == u  # OK
    r = rand(N)
    r_cu = CuVector(r)
    @test Vector(r_cu) == r  # OK
    β = 3.0
    u .= fma.(u, β, r)  # <---------------- 改成了 fma
    u_cu .= u_cu .* β .+ r_cu
    @test u == u_cu   # OK
end

输出:

测试总结:         | 通过  总计  时间
我的GPU在做什么? |    3      3  0.0秒
测试.DefaultTestSet("我的GPU在做什么?", Any[], 3, false, false, true, 1.687446862214095e9, 1.687446862222168e9, false)

附录: 生成的sass

@device_code_sass kernel1!(u_cu, r_cu, β)
// 用于sm_75的内核#broadcast_kernel#26(CUDA.CuKernelContext,CuDeviceVector{Float64, 1},Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1},Tuple{Base.OneTo{Int64}},typeof(+),Tuple{Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1},Nothing,typeof(*),Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float64, 1},Tuple{Bool},Tuple{Int64}},Float64}},Base.Broadcast.Extruded{CuDeviceVector{Float64, 1},Tuple{Bool},Tuple{Int64}}}},Int64)的PTX CompilerJob

.headerflags @“EF_CUDA_TEXMODE_UNIFIED EF_CUDA_64BIT_ADDRESS EF_CUDA_SM75 EF_CUDA_VIRTUAL_SM(EF_CUDA_SM75)”
.elftype @“ET_EXEC”

//--------------------- .text._Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_ --------------------------
.section .text._Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,“ax”,@progbits
.sectioninfo @“SHI_REGISTERS=18.align 128
.global _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_
.type _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,“@function”
.size _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,(.L_x_8-_Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4

<details>
<summary>英文:</summary>

It is not reordering of flops, it is FMA. CUDA.jl (at least 4.0.1) explicitly fuses muls and adds into FMAs, while in Julia you have to either use something like `@fastmath`, or explicitly use `Base.fma`.

The difference between an FMA and non-fused mul-add is that the non-fused instructions would result in rounding of the intermediate result of the mul, hence the difference in arithmetic results.

The generated assembly for CPU can be checked using `@code_native`. In my case, I find that `fma.(u, beta, r)` results in a `vfmadd` instruction, while `u .= u .* beta .+ r` does not.

The generated sass for the CUDA variant can be checked using `CUDA.@device_code_sass`. I am not used to reading sass, but one of the lines was this:

`DFMA R6, R6, c[0x0][0x1b8], R8 ;`,

which I guess is a double precision FMA. Changing the CPU version to explicitly use FMA solved this.

```julia
@testset &quot;What is my GPU doing?&quot; begin
           N = 1024
           u = rand(N)
           u_cu = CuVector(u)
           @test Vector(u_cu) == u  # OK
           r = rand(N)
           r_cu = CuVector(r)
           @test Vector(r_cu) == r  # OK
           β = 3.0
           u .= fma.(u, β, r)  # &lt;---------------- changed to fma
           u_cu .= u_cu .* β .+ r_cu
           @test u == u_cu   # OK
       end

Output:

Test Summary:         | Pass  Total  Time
What is my GPU doing? |    3      3  0.0s
Test.DefaultTestSet(&quot;What is my GPU doing?&quot;, Any[], 3, false, false, true, 1.687446862214095e9, 1.687446862222168e9, false)

Appendix: generated sass

julia&gt; @device_code_sass kernel1!(u_cu, r_cu, β)
// PTX CompilerJob of kernel #broadcast_kernel#26(CUDA.CuKernelContext, CuDeviceVector{Float64, 1}, Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Tuple{Base.OneTo{Int64}}, typeof(+), Tuple{Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Nothing, typeof(*), Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float64, 1}, Tuple{Bool}, Tuple{Int64}}, Float64}}, Base.Broadcast.Extruded{CuDeviceVector{Float64, 1}, Tuple{Bool}, Tuple{Int64}}}}, Int64) for sm_75
.headerflags    @&quot;EF_CUDA_TEXMODE_UNIFIED EF_CUDA_64BIT_ADDRESS EF_CUDA_SM75 EF_CUDA_VIRTUAL_SM(EF_CUDA_SM75)&quot;
.elftype        @&quot;ET_EXEC&quot;
//--------------------- .text._Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_ --------------------------
.section        .text._Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,&quot;ax&quot;,@progbits
.sectioninfo    @&quot;SHI_REGISTERS=18&quot;
.align  128
.global         _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_
.type           _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,@function
.size           _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,(.L_x_8 - _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_)
.other          _Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_,@&quot;STO_CUDA_ENTRY STV_DEFAULT&quot;
_Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_:
.text._Z27julia_broadcast_kernel_314515CuKernelContext13CuDeviceArrayI7Float64Li1ELi1EE11BroadcastedI12CuArrayStyleILi1EE5TupleI5OneToI5Int64EE2__S4_IS2_IS3_ILi1EEvS7_S4_I8ExtrudedIS0_IS1_Li1ELi1EES4_I4BoolES4_IS6_EES1_EES8_IS0_IS1_Li1ELi1EES4_IS9_ES4_IS6_EEEES6_:
; 
IMAD.MOV.U32 R1, RZ, RZ, c[0x0][0x28] ;
IMAD.MOV.U32 R0, RZ, RZ, c[0x0][0x1f8] ;
IMAD.MOV.U32 R2, RZ, RZ, c[0x0][0x1fc] ;
; 
ISETP.GE.U32.AND P0, PT, R0, 0x1, PT ;
ISETP.GE.AND.EX P0, PT, R2, RZ, PT, P0 ;
; 
@!P0 EXIT ;
LDC.U8 R0, c[0x0][0x1a8] ;
S2R R6, SR_TID.X ;
IMAD.MOV.U32 R2, RZ, RZ, c[0x0][0xc] ;
ULDC.U8 UR5, c[0x0][0x1e0] ;
; 
IMAD.MOV.U32 R4, RZ, RZ, c[0x0][0x1f8] ;
S2R R5, SR_CTAID.X ;
ULOP3.LUT UR5, UR5, 0x1, URZ, 0xc0, !UPT ;
IMAD.MOV.U32 R7, RZ, RZ, RZ ;
LOP3.LUT R0, R0, 0x1, RZ, 0xc0, !PT ;
IADD3 R6, R6, 0x1, RZ ;
ISETP.NE.U32.AND P0, PT, R0, 0x1, PT ;
IMAD R0, R2, c[0x0][0x0], RZ ;
IMAD.MOV.U32 R2, RZ, RZ, c[0x0][0x1fc] ;
SHF.R.S32.HI R3, RZ, 0x1f, R0 ;
; 
@P0 BRA `(.L_x_0) ;
ISETP.NE.AND P0, PT, RZ, UR5, PT ;
@!P0 BRA `(.L_x_1) ;
; 
IMAD.WIDE.U32 R6, R5, c[0x0][0x0], R6 ;
IADD3 R9, P1, R6, -0x1, RZ ;
IADD3 R5, P0, P2, R9, 0x1, -R0 ;
IADD3.X R8, R7, -0x1, RZ, P1, !PT ;
; 
IADD3 R5, P1, R0, R5, RZ ;
; 
IADD3.X R6, R8, RZ, ~R3, P0, P2 ;
; 
ISETP.GT.U32.AND P0, PT, R5, c[0x0][0x180], PT ;
IMAD.X R6, R3, 0x1, R6, P1 ;
ISETP.GT.AND.EX P0, PT, R6, c[0x0][0x184], PT, P0 ;
; 
@P0 EXIT ;
SHF.L.U64.HI R11, R9.reuse, 0x3, R8 ;
IMAD.SHL.U32 R10, R9, 0x8, RZ ;
SHF.L.U64.HI R14, R0, 0x3, R3 ;
; 
IMAD.MOV.U32 R12, RZ, RZ, R6 ;
.L_x_2:
; 
ULDC.64 UR4, c[0x0][0x188] ;
ULDC.64 UR6, c[0x0][0x1c0] ;
LDG.E.64.SYS R6, [R10.64+UR4] ;
LDG.E.64.SYS R8, [R10.64+UR6] ;
IADD3 R4, P0, R4, -0x1, RZ ;
ULDC.64 UR4, c[0x0][0x168] ;
; 
IADD3 R5, P1, R0, R5, RZ ;
IADD3.X R2, R2, -0x1, RZ, P0, !PT ;
ISETP.NE.U32.AND P0, PT, R4, RZ, PT ;
ISETP.NE.AND.EX P0, PT, R2, RZ, PT, P0 ;
; 
DFMA R6, R6, c[0x0][0x1b8], R8 ;
LEA R9, P2, R0, R10, 0x3 ;
; 
IMAD.X R8, R3, 0x1, R12, P1 ;
ISETP.GT.U32.AND P1, PT, R5, c[0x0][0x180], PT ;
IMAD.X R12, R11, 0x1, R14, P2 ;
ISETP.GT.AND.EX P1, PT, R8, c[0x0][0x184], PT, P1 ;
; 
STG.E.64.SYS [R10.64+UR4], R6 ;
; 
@!P0 EXIT ;
; 
IMAD.MOV.U32 R11, RZ, RZ, R12 ;
IMAD.MOV.U32 R10, RZ, RZ, R9 ;
IMAD.MOV.U32 R12, RZ, RZ, R8 ;
; 
@!P1 BRA `(.L_x_2) ;
EXIT ;
.L_x_1:
; 
IMAD.WIDE.U32 R6, R5, c[0x0][0x0], R6 ;
ULDC.64 UR6, c[0x0][0x1e8] ;
ULDC.64 UR4, c[0x0][0x1c0] ;
IADD3 R5, P1, R6, -0x1, RZ ;
ULEA UR4, UP0, UR6, UR4, 0x3 ;
IADD3 R9, P0, P2, R5, 0x1, -R0 ;
ULEA.HI.X UR5, UR6, UR5, UR7, 0x3, UP0 ;
IADD3.X R6, R7, -0x1, RZ, P1, !PT ;
; 
IADD3 R9, P1, R0, R9, RZ ;
; 
IADD3.X R8, R6, RZ, ~R3, P0, P2 ;
; 
ISETP.GT.U32.AND P0, PT, R9, c[0x0][0x180], PT ;
IMAD.X R12, R3, 0x1, R8, P1 ;
ISETP.GT.AND.EX P0, PT, R12, c[0x0][0x184], PT, P0 ;
; 
@P0 EXIT ;
; 
SHF.L.U64.HI R11, R5.reuse, 0x3, R6 ;
IMAD.SHL.U32 R10, R5, 0x8, RZ ;
SHF.L.U64.HI R14, R0, 0x3, R3 ;
; 
IMAD.MOV.U32 R5, RZ, RZ, R9 ;
.L_x_3:
; 
ULDC.64 UR6, c[0x0][0x188] ;
LDG.E.64.SYS R8, [UR4+-0x8] ;
LDG.E.64.SYS R6, [R10.64+UR6] ;
IADD3 R4, P0, R4, -0x1, RZ ;
IADD3.X R2, R2, -0x1, RZ, P0, !PT ;
; 
ISETP.NE.U32.AND P0, PT, R4, RZ, PT ;
ISETP.NE.AND.EX P0, PT, R2, RZ, PT, P0 ;
IADD3 R5, P1, R0.reuse, R5, RZ ;
; 
ULDC.64 UR6, c[0x0][0x168] ;
; 
DFMA R6, R6, c[0x0][0x1b8], R8 ;
LEA R9, P2, R0, R10, 0x3 ;
; 
IMAD.X R8, R3, 0x1, R12, P1 ;
ISETP.GT.U32.AND P1, PT, R5, c[0x0][0x180], PT ;
; 
STG.E.64.SYS [R10.64+UR6], R6 ;
IMAD.X R12, R11, 0x1, R14, P2 ;
; 
ISETP.GT.AND.EX P1, PT, R8, c[0x0][0x184], PT, P1 ;
; 
@!P0 EXIT ;
; 
IMAD.MOV.U32 R11, RZ, RZ, R12 ;
IMAD.MOV.U32 R10, RZ, RZ, R9 ;
IMAD.MOV.U32 R12, RZ, RZ, R8 ;
; 
@!P1 BRA `(.L_x_3) ;
EXIT ;
.L_x_0:
; 
ISETP.NE.AND P0, PT, RZ, UR5, PT ;
ULDC.64 UR8, c[0x0][0x1b0] ;
ULDC.64 UR6, c[0x0][0x188] ;
ULEA UR4, UP0, UR8, UR6, 0x3 ;
ULEA.HI.X UR5, UR8, UR7, UR9, 0x3, UP0 ;
@!P0 BRA `(.L_x_4) ;
; 
IMAD.WIDE.U32 R6, R5, c[0x0][0x0], R6 ;
IADD3 R5, P1, R6, -0x1, RZ ;
IADD3 R9, P0, P2, R5, 0x1, -R0 ;
IADD3.X R6, R7, -0x1, RZ, P1, !PT ;
; 
IADD3 R9, P1, R0, R9, RZ ;
; 
IADD3.X R8, R6, RZ, ~R3, P0, P2 ;
; 
ISETP.GT.U32.AND P0, PT, R9, c[0x0][0x180], PT ;
IMAD.X R12, R3, 0x1, R8, P1 ;
ISETP.GT.AND.EX P0, PT, R12, c[0x0][0x184], PT, P0 ;
@P0 EXIT ;
; 
SHF.L.U64.HI R11, R5.reuse, 0x3, R6 ;
IMAD.SHL.U32 R10, R5, 0x8, RZ ;
SHF.L.U64.HI R14, R0, 0x3, R3 ;
; 
IMAD.MOV.U32 R5, RZ, RZ, R9 ;
.L_x_5:
; 
ULDC.64 UR6, c[0x0][0x1c0] ;
LDG.E.64.SYS R6, [UR4+-0x8] ;
LDG.E.64.SYS R8, [R10.64+UR6] ;
IADD3 R4, P0, R4, -0x1, RZ ;
ULDC.64 UR6, c[0x0][0x168] ;
; 
IADD3 R5, P1, R0, R5, RZ ;
IADD3.X R2, R2, -0x1, RZ, P0, !PT ;
ISETP.NE.U32.AND P0, PT, R4, RZ, PT ;
ISETP.NE.AND.EX P0, PT, R2, RZ, PT, P0 ;
; 
DFMA R6, R6, c[0x0][0x1b8], R8 ;
LEA R9, P2, R0, R10, 0x3 ;
; 
IMAD.X R8, R3, 0x1, R12, P1 ;
ISETP.GT.U32.AND P1, PT, R5, c[0x0][0x180], PT ;
IMAD.X R12, R11, 0x1, R14, P2 ;
ISETP.GT.AND.EX P1, PT, R8, c[0x0][0x184], PT, P1 ;
; 
STG.E.64.SYS [R10.64+UR6], R6 ;
; 
@!P0 EXIT ;
; 
IMAD.MOV.U32 R11, RZ, RZ, R12 ;
IMAD.MOV.U32 R10, RZ, RZ, R9 ;
IMAD.MOV.U32 R12, RZ, RZ, R8 ;
@!P1 BRA `(.L_x_5) ;
EXIT ;
.L_x_4:
; 
IMAD.WIDE.U32 R6, R5, c[0x0][0x0], R6 ;
ULDC.64 UR6, c[0x0][0x1e8] ;
ULDC.64 UR8, c[0x0][0x1c0] ;
IADD3 R11, P2, R6, -0x1, RZ ;
ULEA UR8, UP0, UR6, UR8, 0x3 ;
IADD3 R5, P0, P1, R11, 0x1, -R0 ;
ULEA.HI.X UR7, UR6, UR9, UR7, 0x3, UP0 ;
IADD3.X R6, R7, -0x1, RZ, P2, !PT ;
; 
IADD3 R5, P2, R0, R5, RZ ;
; 
IADD3.X R8, R6, RZ, ~R3, P0, P1 ;
; 
ISETP.GT.U32.AND P0, PT, R5, c[0x0][0x180], PT ;
; 
LEA R13, P1, R11, c[0x0][0x168], 0x3 ;
; 
IMAD.X R12, R3, 0x1, R8, P2 ;
; 
LEA.HI.X R11, R11, c[0x0][0x16c], R6, 0x3, P1 ;
; 
ISETP.GT.AND.EX P0, PT, R12, c[0x0][0x184], PT, P0 ;
; 
@P0 EXIT ;
; 
SHF.L.U64.HI R14, R0, 0x3, R3 ;
.L_x_6:
; 
UMOV UR6, UR8 ;
LDG.E.64.SYS R6, [UR4+-0x8] ;
LDG.E.64.SYS R8, [UR6+-0x8] ;
; 
IADD3 R15, P1, R4, -0x1, RZ ;
; 
IMAD.MOV.U32 R4, RZ, RZ, R13 ;
; 
LEA R10, P2, R0, R13, 0x3 ;
IADD3.X R2, R2, -0x1, RZ, P1, !PT ;
ISETP.NE.U32.AND P1, PT, R15, RZ, PT ;
ISETP.NE.AND.EX P1, PT, R2, RZ, PT, P1 ;
; 
DFMA R6, R6, c[0x0][0x1b8], R8 ;
; 
IADD3 R8, P0, R0, R5, RZ ;
; 
IMAD.MOV.U32 R5, RZ, RZ, R11 ;
; 
IMAD.X R11, R11, 0x1, R14, P2 ;
IMAD.X R9, R3, 0x1, R12, P0 ;
ISETP.GT.U32.AND P0, PT, R8, c[0x0][0x180], PT ;
; 
STG.E.64.SYS [R4], R6 ;
; 
ISETP.GT.AND.EX P0, PT, R9, c[0x0][0x184], PT, P0 ;
; 
@!P1 EXIT ;
; 
IMAD.MOV.U32 R4, RZ, RZ, R15 ;
IMAD.MOV.U32 R13, RZ, RZ, R10 ;
IMAD.MOV.U32 R5, RZ, RZ, R8 ;
IMAD.MOV.U32 R12, RZ, RZ, R9 ;
; 
@!P0 BRA `(.L_x_6) ;
EXIT ;
.L_x_7:
BRA `(.L_x_7);
.L_x_8:

huangapple
  • 本文由 发表于 2023年6月22日 18:09:13
  • 转载请务必保留本文链接:https://go.coder-hub.com/76530798.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定