How do you write Data from a Spark Data Frame to Azure Application Insights from data bricks using python?

huangapple go评论80阅读模式
英文:

How do you write Data from a Spark Data Frame to Azure Application Insights from data bricks using python?

问题

以下是您要翻译的代码部分:

try:
    # 检查对账数据框的记录数,并且如果记录数大于 0,则将其发送到 Azure Application Insights,表示存在一个或多个对账错误。
    if reconciliation_DF.count() > 0:
       reconciliation_DF_json = reconciliation_DF.toJSON().collect()   # 将数据框转换为 JSON
       reconciliation_DF_json = json.dumps(reconciliation_DF_json)    # 将 JSON 列表转换为用于日志记录的字符串

       # 在这里编写代码将 "reconciliation_DF_json" 数据写入 Azure Application Insights???
       # 这是我卡住的地方。

    else:
         print("未找到对账错误")

except Exception as e:
    print("发生错误:{}".format(e))
    raise

希望这有所帮助。如果您有其他问题或需要进一步的帮助,请随时提出。

英文:

I have a spark data frame that has some reconciliation data and this data frame only gets created if reconciliation fails.

When this spark data frame does get created in databricks, I need to send the data in it to azure application insights from databricks.

try:
    # Check count of reconciliation Data Frame and send to Application Insights if count > 0, meaning there's one or more reconciliation error(s).
    if reconciliation_DF.count() > 0:
       reconciliation_DF_json = reconciliation_DF.toJSON().collect()   # Convert Data Frame to JSON
       reconciliation_DF_json = json.dumps(reconciliation_DF_json)    # Convert list of JSONs to string for logging

       # Some code here to write this "reconciliation_DF_json" data to Azure Application Insights???
       # This is where I am stuck.

    else:
         print("No reconciliation errors found")

except Exception as e:
    print("An error occurred: {}".format(e))
    raise

There seems to be a library, “Open Telemetry”, but the Microsoft documentation isn’t clear on how to use that for my scenario.

A python code example of how to do this with a data frame named "reconciliation_DF" would be much appreciated.

答案1

得分: 1

我在 Azure Monitor 的 Python OpenTelemetry 解决方案上工作。让我知道这是否有所帮助。使用 azure-monitor-opentelemetry 库,您可以通过单个 configure_azure_monitor() 调用来对常见库和 Python 日志进行仪表化。然后,您可以使用原生的 Python 日志库将跟踪发送到 Application Insights:

configure_azure_monitor(connection_string=CONN_STR)
logger.setLevel(logging.INFO)
try:
    # 检查协调数据框的计数,如果计数大于 0,则表示存在一个或多个协调错误。
    if reconciliation_DF.count() > 0:
       reconciliation_DF_json = reconciliation_DF.toJSON().collect()   # 将数据框转换为 JSON
       reconciliation_DF_json = json.dumps(reconciliation_DF_json)    # 将 JSON 列表转换为字符串以进行日志记录

       logger.info(reconciliation_DF_json)

    else:
         print("未找到协调错误")

except Exception as e:
    print("发生错误: {}".format(e))
    raise

请注意,您也可以使用环境变量设置连接字符串。可能有几种方法可以实现您尝试的操作。请让我知道这是否符合您的用例。

英文:

I work on Azure Monitor's Python OpenTelemetry solutions. Let me know if this helps. Using the azure-monitor-opentelemetry library, you can instrument common libraries and python logs via a single configure_azure_monitor() call. You can then use the native python logging library to sent traces to Application Insights:

configure_azure_monitor(connection_string=CONN_STR)
logger.setLevel(logging.INFO)
try:
    # Check count of reconciliation Data Frame and send to Application Insights if count > 0, meaning there's one or more reconciliation error(s).
    if reconciliation_DF.count() > 0:
       reconciliation_DF_json = reconciliation_DF.toJSON().collect()   # Convert Data Frame to JSON
       reconciliation_DF_json = json.dumps(reconciliation_DF_json)    # Convert list of JSONs to string for logging

       logger.info(reconciliation_DF_json)

    else:
         print("No reconciliation errors found")

except Exception as e:
    print("An error occurred: {}".format(e))
    raise

Note that you can also set the connection string with an environment variable. There may be a few ways to do what you are trying to. Please, let me know if this fits your use case.

huangapple
  • 本文由 发表于 2023年6月18日 23:51:23
  • 转载请务必保留本文链接:https://go.coder-hub.com/76501358.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定