Pyspark: 如何避免将Python UDF作为驱动操作?

huangapple go评论64阅读模式
英文:

Pyspark: How to avoid python UDF as a driver operation?

问题

我有一个需要在pyspark代码中运行的Python UDF,有没有一种调用该UDF的方式,以便我可以使用mappartitions来避免该Python操作仅在驱动节点上运行,并利用整个集群,因为如果我直接在数据框上使用UDF,那将作为驱动程序操作运行,是吗?如何高效地做到这一点?

class Some_class_name:
   def pyt_udf(x):
     <一些Python操作>
     return data

   def opr_to_be_done:
      df = spark.sql('''select col1, col2 from table_name''')
      rdd2 = df.rdd.mapPartitions(lambda x: pyt_udf(x))
英文:

I have a python UDF that needs to be run in a pyspark code, Is there any way of calling that UDF using mappartitions, so that I can avoid that python operation not just run only in the driver node and use the full cluster, because If I just use the UDF directly on the dataframe, that would run as a driver operation, isn't it? What is the efficient way of doing this?

class Some_class_name
   def pyt_udf(x):
     &lt;some python operation&gt;
     return data

   def opr_to_be_done:
      df = spark.sql(f&#39;&#39;&#39;select col1, col2 from table_name&#39;&#39;&#39;)
      rdd2=df.rdd.mappartition(lambda x: pyt_udf(x))

答案1

得分: 0

你可以在PySpark中使用mapPartitions来并行地将Python UDF应用于集群中的节点上的RDD。这可以比直接将UDF应用于DataFrame更高效,后者将在驱动节点上执行。

from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import StructType, StructField, IntegerType, StringType

# 为输入DataFrame定义模式
schema = StructType([
    StructField('col1', IntegerType(), True),
    StructField('col2', StringType(), True)
])

# 定义Python UDF
@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def python_udf(data):
    # 对输入数据应用一些Python操作
    result = data.apply(<some python operation>)
    return result

# 创建一个DataFrame
df = spark.sql("SELECT col1, col2 FROM table_name")

# 将DataFrame转换为RDD并使用mapPartitions应用Python UDF
rdd = df.rdd.mapPartitions(lambda partition: python_udf(partition.toPandas()))

# 将RDD转换回DataFrame
result_df = rdd.toDF(schema)

# 显示结果DataFrame
result_df.show()

请注意,上述代码中的<some python operation>应替换为您要在Python UDF中执行的实际Python操作。

英文:

You can use mapPartitions in PySpark to apply a Python UDF to an RDD in parallel across the nodes in the cluster. This can be more efficient than applying the UDF directly to a DataFrame, which would be executed on the driver node.

from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import StructType, StructField, IntegerType, StringType

# Define the schema for the input DataFrame
schema = StructType([
    StructField(&#39;col1&#39;, IntegerType(), True),
    StructField(&#39;col2&#39;, StringType(), True)
])

# Define the Python UDF
@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def python_udf(data):
    # Apply some Python operation to the input data
    result = data.apply(&lt;some python operation&gt;)
    return result

# Create a DataFrame
df = spark.sql(&quot;SELECT col1, col2 FROM table_name&quot;)

# Convert the DataFrame to an RDD and apply the Python UDF using mapPartitions
rdd = df.rdd.mapPartitions(lambda partition: python_udf(partition.toPandas()))

# Convert the RDD back to a DataFrame
result_df = rdd.toDF(schema)

# Show the result DataFrame
result_df.show()

huangapple
  • 本文由 发表于 2023年2月9日 03:38:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/75390927.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定