在Pandas数据框中计算单词频率花费的时间太长。

huangapple go评论58阅读模式
英文:

Taking too long to count word frequency in pandas dataframe

问题

在StackOverflow上进行了研究后,我得到了以下代码,用于计算我的数据框中一列中单词的相对频率:

df['objeto'] = df['objeto'].apply(unidecode.unidecode)
df['objeto'] = df['objeto'].str.replace('[^\w\s]','')

stop_words = nltk.corpus.stopwords.words('portuguese')
stop_words.extend(['12', 'termo', 'aquisicao', 'vinte', 'demandas'])

counter = Counter()

for word in " ".join(df['objeto']).lower().split():
    if word not in stop_words:
        counter[word] += 1

print(counter.most_common(10))

for word, count in counter.most_common(100):
    print(word, count)

问题在于该代码执行大约需要30秒的时间。我做错了什么?有没有优化和改进代码的方法?我打算创建一个类似的函数来在其他数据框上执行此操作。

我是pandas的初学者,很少使用它。我在StackOverflow上进行了一些研究。谢谢。

英文:

After researching here on StackOverflow, I came up with the code below to count the relative frequency of words in one of the columns of my dataframe:

df['objeto'] = df['objeto'].apply(unidecode.unidecode)
df['objeto'] = df['objeto'].str.replace('[^\w\s]','')

stop_words = nltk.corpus.stopwords.words('portuguese')
stop_words.extend(['12', 'termo', 'aquisicao', 'vinte', 'demandas'])

counter = Counter()

for word in " ".join(df['objeto']).lower().split():
    if word not in stop_words:
        counter[word] += 1

print(counter.most_common(10))

for word, count in counter.most_common(100):
    print(word, count)

The problem is that the code is taking approximately 30 seconds to execute. What did I do wrong? Is there any way to optimize and improve my code? I intend to create a function like this to do it on other dataframes.

I'm a beginner in pandas, I use it sparingly. I did some research here on stackoverflow. Thank you.

答案1

得分: 1

df = pd.DataFrame(dict(
   id = ['a', 'b', 'c', 'd'],
   objeto = ['Foo bar', 'hello Hi FOO', 'Yes hi Hello', 'Pythons PaNdas yeS']
))

stop_words = ['foo', 'bar']

# 使用 pandas 进行计数的主要问题在于没有使用 `.value_counts()`
# 在这种情况下,您可以将所有单词放入单个列中,可以使用 `.explode()` 完成
df['objeto'].str.casefold().str.split().explode()

# 结果如下所示:
# 0        foo
# 0        bar
# 1      hello
# 1         hi
# 1        foo
# 2        yes
# 2         hi
# 2      hello
# 3    pythons
# 3     pandas
# 3        yes
# Name: objeto, dtype: object

# 您可以使用 `.mask()` 来删除包含在 `stop_words` 中的单词,然后使用 `.value_counts()` 进行计数
df['objeto'].str.casefold().str.split().explode().mask(lambda word: word.isin(stop_words)).value_counts()

# 结果如下所示:
# objeto
# hello      2
# hi         2
# yes        2
# pythons    1
# pandas     1
# Name: objeto, dtype: int64
英文:

It helps if you provide some sort of runnable example:

df = pd.DataFrame(dict(
   id = ['a', 'b', 'c', 'd'],
   objeto = ['Foo bar', 'hello Hi FOO', 'Yes hi Hello', 'Pythons PaNdas yeS']
))

stop_words = ['foo', 'bar']

The main issue here is not using pandas to do the counting.

pandas has .value_counts()

In this case, you want to get all the words into a single column which you can do with .explode()

df['objeto'].str.casefold().str.split().explode()
0        foo
0        bar
1      hello
1         hi
1        foo
2        yes
2         hi
2      hello
3    pythons
3     pandas
3        yes
Name: objeto, dtype: object

You can .mask() to remove words that are .isin(stop_words) then .value_counts()

df['objeto'].str.casefold().str.split().explode().mask(lambda word: word.isin(stop_words)).value_counts()
objeto
hello      2
hi         2
yes        2
pythons    1
pandas     1
Name: count, dtype: int64

huangapple
  • 本文由 发表于 2023年6月18日 21:33:06
  • 转载请务必保留本文链接:https://go.coder-hub.com/76500795.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定