如何在PyTorch的ResNET50中更改conv2d.layer4.conv3中的out_channels数量?

huangapple go评论83阅读模式
英文:

how can i change the number of out_channels at conv2d.layer4.conv3 in ResNET50 in pytorch?

问题

我想要更改PyTorch中Resnet50的输出通道。

尝试了这个,但出现了"weight should contain 2048 elements not 300"错误,有什么问题吗?

我尝试了chatGPT,但出现了另一个错误。

# 模型训练例程
print("训练中:")

new_num_channels = 300

#----#
resnet_v2 = models.resnet50(pretrained=True)

#print(resnet_v2)
#print("fc_layer.in_features")
#print(fc_layer.in_features)

resnet_v2.layer4[-1].conv3.out_channels = new_num_channels
num_classes = 3


weight = torch.nn.Parameter(torch.Tensor(new_num_channels))
torch.nn.init.uniform_(weight)  # 初始化权重张量

resnet_v2.layer4[-1].bn3.weight = weight
resnet_v2.layer4[-1].bn3.num_features = new_num_channels



fc_layer = resnet_v2.fc
fc_layer.in_features = new_num_channels
fc_layer.weight = torch.nn.Parameter(torch.Tensor(new_num_channels, fc_layer.out_features))

gap_layer = resnet_v2.avgpool
gap_layer.num_features = fc_layer.in_features


resnet_v2.fc = nn.Sequential(
              nn.Linear(new_num_channels, 128), # 更改全连接层中的通道数
              nn.ReLU(inplace=True),
              nn.Linear(128, num_classes))

fc_layer.reset_parameters()

resnet_v2 = resnet_v2.to(device)

print(resnet_v2)
changed_model = train_model(resnet_v2, loss_fn, opt, scheduler, num_epochs=train_epoch)

英文:

I want to change the output channels of Resnet50 in pytorch

so tried this but "weight should contain 2048 elements not 300" error occured..what's wrong with this?

I tried chatGPT But it occurs another error..

# Model training routine
print("\nTraining:-\n")

new_num_channels = 300

#----#
resnet_v2 = models.resnet50(pretrained=True)

#print(resnet_v2)
#print("fc_layer.in_features")
#print(fc_layer.in_features)

resnet_v2.layer4[-1].conv3.out_channels = new_num_channels
num_classes = 3


weight = torch.nn.Parameter(torch.Tensor(new_num_channels))
torch.nn.init.uniform_(weight)  # Initialize the weight tensor

resnet_v2.layer4[-1].bn3.weight = weight
resnet_v2.layer4[-1].bn3.num_features = new_num_channels



fc_layer = resnet_v2.fc
fc_layer.in_features = new_num_channels
fc_layer.weight = torch.nn.Parameter(torch.Tensor(new_num_channels, fc_layer.out_features))

gap_layer = resnet_v2.avgpool
gap_layer.num_features = fc_layer.in_features


resnet_v2.fc = nn.Sequential(
              nn.Linear(new_num_channels, 128), # Change the number of channels in Fully connected layer 
              nn.ReLU(inplace=True),
              nn.Linear(128, num_classes))

fc_layer.reset_parameters()

resnet_v2 = resnet_v2.to(device)

print(resnet_v2)
changed_model = train_model(resnet_v2, loss_fn, opt, scheduler, num_epochs=train_epoch)

答案1

得分: 1

根据我的理解,您试图修改PyTorch中预训练的ResNet-50模型的架构,具体来说,您想要更改最后一个卷积层中的通道数,然后调整后续的层以适应此更改。您当前的方法是直接修改模型参数,这在PyTorch中不推荐。

要更改ResNet50(或任何其他层)最后一个卷积层的输出通道数,您需要使用相同类型的新层实例(在本例中是nn.Conv2d)替换该层,但输出通道数不同。类似地,您需要调整后续的BatchNorm和Linear层以适应此更改。

英文:

From what I understand, you're trying to modify the architecture of a pretrained ResNet-50 model in PyTorch, specifically, you want to change the number of channels in the last convolutional layer, and subsequently adjust the following layers to accommodate this change. Your current approach is directly altering the model parameters which is not recommended in PyTorch.

To change the number of output channels in the last convolutional layer of ResNet50 (or any other layer), you'll need to replace the layer with a new instance of the same type of layer (in this case, nn.Conv2d), but with a different number of output channels. Similarly, you will need to adjust the following BatchNorm and Linear layers to accommodate this change.

huangapple
  • 本文由 发表于 2023年6月15日 23:36:52
  • 转载请务必保留本文链接:https://go.coder-hub.com/76483311.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定