英文:
Looking for conditional string-appended values in csv.reader
问题
我知道你要求只翻译代码部分,下面是你提供的代码的翻译:
companyList = {'1000000': 'Vendor1', ...}
with open('Vendor Report.csv', mode='r', encoding='latin1') as file:
csvreader = csv.reader(file)
for row in csvreader:
print(' '.join(row))
if 'Functional Amount Not Invoiced:' in row:
...
请注意,这是你提供的代码的翻译,只包含代码部分,没有其他内容。
英文:
I have a vendor payables aging report I'm trying to automate which is provided as a .csv file exported from a financial system. In the report, a line called 'functional amount not invoiced' is listed, followed by a $xx.xx amount for each vendor on the list. Below is an example of the report output (with numbers changed):
1000000 Vendor1 USD PO Number 1/1/1900
Item1, Description
100 Each $1.00
INV000000 1/1/1900 000 Each 100 0 $1.00 $24.00
0 0 $24.00
INV000001 1/1/1900 000 Each 50 0 $1.00 $10.50
0 0 $10.50
-------------------
Functional Amount Not Invoiced: $250.00
Amount Not Invoiced Less Returned: $250.00
1000001 Vendor2 USD PO2061994 6/2/2015
Item2, Description 30 Each $38.00
INV000002 7/23/2015 000 Each 9 0 $38.00 $342.00
0 0 $342.00
INV000003 7/23/2015 000 Each 7 0 $38.00 $266.00
0 0 $266.00
-------------------
Functional Amount Not Invoiced: $346,955.00
Amount Not Invoiced Less Returned: $1,245.00
I would like to know how I can parse a .csv file for all instances of 'Functional Amount Not Invoiced' greater than or equal to $10,000.00, and in those cases, take the first two strings and return them (in the case above, I would return 1000000 Vendor1). Here's my code so far:
companyList={'1000000':'Vendor1',...}
with open('Vendor Report.csv',mode='r',encoding='latin1') as file:
csvreader=csv.reader(file)
for row in csvreader:
print(' '.join(row))
if 'Functional Amount Not Invoiced:' in row:
...
I've gotten to the ... part, and I know the logic is 'if amount after string is at least $10,000.00, find the vendor ID and vendor name and return them. The goal would be to have a list of all vendors over $10,000.00 appended automatically to a list. My expected output would be as follows:
Vendor ID Vendor Name $346,955.00
...
答案1
得分: 1
以下是代码部分的翻译:
#pip install pandas
import pandas as pd
MIN_AMOUNT = 10000
df = pd.read_fwf("input.csv", header=None)
vendor_vals = df[0].str.extract(r"(\d+) ([a-zA-Z]+\d+)", expand=False).ffill()
fani_vals = (df.pop(0).str.extract(r"Functional Amount Not Invoiced: $(.*)",
expand=False).replace(",|\.0+": "", regex=True).astype(float))
companyList = (
df.assign(VENDOR = vendor_vals, FANI = fani_vals).dropna()
.loc[lambda df_: df_["FANI"].gt(MIN_AMOUNT)].to_dict("list")
)
df = pd.read_fwf("input.csv", header=None)
out = (
df.join(df[0].str.extract(r"(\d+) ([a-zA-Z]+\d+)")
.rename(columns={0: "VENDOR_ID", 1:"VENDOR_NAME"}).ffill())
.assign(FANI = lambda df_: df_.pop(0).str.extract(r"Functional Amount Not Invoiced: $(.*)",
expand=False).replace(",|\.0+": "", regex=True).astype(float))
.dropna().loc[lambda df_: df_["FANI"].gt(MIN_AMOUNT)].reset_index(drop=True)
)
希望这些翻译对您有所帮助。
英文:
IIUC, here is one option with [tag:pandas] by using read_fwf
and extract
:
#pip install pandas
import pandas as pd
MIN_AMOUNT = 10000
df = pd.read_fwf("input.csv", header=None)
vendor_vals = df[0].str.extract(r"(\d+) ([a-zA-Z]+\d+)", expand=False).ffill()
fani_vals = (df.pop(0).str.extract(r"Functional Amount Not Invoiced: $(.*)",
expand=False).replace({r",|\.0+": ""}, regex=True).astype(float))
companyList = (
df.assign(VENDOR = vendor_vals, FANI = fani_vals).dropna()
.loc[lambda df_: df_["FANI"].gt(MIN_AMOUNT)].to_dict("list")
)
Output :
>>> print(companyList)
{'VENDOR': ['1000001 Vendor2'], 'FANI': [346955.0]}
Update :
If you need a dataframe (to make a .csv), use this :
df = pd.read_fwf("input.csv", header=None)
out = (
df.join(df[0].str.extract(r"(\d+) ([a-zA-Z]+\d+)")
.rename(columns={0: "VENDOR_ID", 1:"VENDOR_NAME"}).ffill())
.assign(FANI = lambda df_: df_.pop(0).str.extract(r"Functional Amount Not Invoiced: $(.*)",
expand=False).replace({r",|\.0+": ""}, regex=True).astype(float))
.dropna().loc[lambda df_: df_["FANI"].gt(MIN_AMOUNT)].reset_index(drop=True)
)
Output :
>>> print(out)
VENDOR_ID VENDOR_NAME FANI
0 1000001 Vendor2 346955.0
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论