如何使用Huggingface transformers加载基于llama的fine-tuned peft/lora模型?

huangapple go评论175阅读模式
英文:

How to load a fine-tuned peft/lora model based on llama with Huggingface transformers?

问题

我已经按你的要求翻译了以下内容:

尝试加载本地保存的模型

model = AutoModelForCausalLM.from_pretrained("finetuned_model")

结果为 Killed


尝试从hub加载模型:

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "lucas0/empath-llama-7b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(cwd+"/tokenizer.model")

# 加载Lora模型
model = PeftModel.from_pretrained(model, peft_model_id)

结果为:

AttributeError: /home/ubuntu/empath/lora/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats

完整的堆栈跟踪

模型创建:

我使用PEFT和LoRa进行了微调:

model = AutoModelForCausalLM.from_pretrained(
    "decapoda-research/llama-7b-hf",
    torch_dtype=torch.float16,
    device_map='auto',
)

我不得不下载并手动指定llama的分词器。

tokenizer = LlamaTokenizer(cwd+"/tokenizer.model")
tokenizer.pad_token = tokenizer.eos_token

至于训练:

from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, config)

data = pd.read_csv("my_csv.csv")
dataset = Dataset.from_pandas(data)
tokenized_dataset = dataset.map(lambda samples: tokenizer(samples["text"]))

trainer = transformers.Trainer(
    model=model,
    train_dataset=tokenized_dataset,
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=100,
        max_steps=100,
        learning_rate=1e-3,
        fp16=True,
        logging_steps=1,
        output_dir='outputs',
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)

model.config.use_cache = True  # 消除警告,请在推断时重新启用!
trainer.train()

并且本地保存了模型:

trainer.save_model(cwd+"/finetuned_model")
print("saved trainer locally")

以及推送到hub:

model.push_to_hub("lucas0/empath-llama-7b", create_pr=1)

如何加载我微调的模型?

英文:

I've followed this tutorial (colab notebook) in order to finetune my model.

Trying to load my locally saved model

model = AutoModelForCausalLM.from_pretrained("finetuned_model")

yields Killed.


Trying to load model from hub:

yields

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "lucas0/empath-llama-7b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(cwd+"/tokenizer.model")

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

yields

AttributeError: /home/ubuntu/empath/lora/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats

full stacktrace

Model Creation:

I have finetuned a model using PEFT and LoRa:

model = AutoModelForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
torch_dtype=torch.float16,
device_map='auto',
)

I had to download and manually specify the llama tokenizer.

tokenizer = LlamaTokenizer(cwd+"/tokenizer.model")
tokenizer.pad_token = tokenizer.eos_token

to the training:

from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, config)

data = pd.read_csv("my_csv.csv")
dataset = Dataset.from_pandas(data)
tokenized_dataset = dataset.map(lambda samples: tokenizer(samples["text"]))

trainer = transformers.Trainer(
    model=model,
    train_dataset=tokenized_dataset,
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=100,
        max_steps=100,
        learning_rate=1e-3,
        fp16=True,
        logging_steps=1,
        output_dir='outputs',
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = True  # silence the warnings. Please re-enable for inference!
trainer.train()

and saved it locally with:

trainer.save_model(cwd+"/finetuned_model")
print("saved trainer locally")

as well as to the hub:

model.push_to_hub("lucas0/empath-llama-7b", create_pr=1)

How can I load my finetuned model?

答案1

得分: 3

要加载经过微调的 peft/lora 模型,请查看 guanco 示例,https://stackoverflow.com/a/76372390/610569

import torch
from peft import PeftModel    
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer

model_name = "decapoda-research/llama-7b-hf"
adapters_name = "lucas0/empath-llama-7b"

print(f"开始加载模型 {model_name} 到内存中")

m = AutoModelForCausalLM.from_pretrained(
    model_name,
    #load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = LlamaTokenizer.from_pretrained(model_name)
tok.bos_token_id = 1

stop_token_ids = [0]

print(f"成功加载模型 {model_name} 到内存中")

为了正确加载模型,您至少需要一个 A10g GPU 运行时。

有关更多详细信息,请参阅:

英文:

To load a fine-tuned peft/lora model, take a look at the guanco example, https://stackoverflow.com/a/76372390/610569

import torch
from peft import PeftModel    
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer

model_name = "decapoda-research/llama-7b-hf"
adapters_name = "lucas0/empath-llama-7b"

print(f"Starting to load the model {model_name} into memory")

m = AutoModelForCausalLM.from_pretrained(
    model_name,
    #load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = LlamaTokenizer.from_pretrained(model_name)
tok.bos_token_id = 1

stop_token_ids = [0]

print(f"Successfully loaded the model {model_name} into memory")

You will need an A10g GPU runtime minimally to load the model properly.


For more details see

答案2

得分: 0

你可以在推送后像这样加载。我成功地使用以下代码片段完成了这个操作:

# 安装所需的库
# pip install peft transformers

import torch
from peft import PeftModel, PeftConfig
from transformers import LlamaTokenizer, LlamaForCausalLM
from accelerate import infer_auto_device_map, init_empty_weights

peft_model_id = "--path--"  # 替换为你的模型路径

# 从预训练模型配置中加载配置
config = PeftConfig.from_pretrained(peft_model_id)

# 使用LlamaForCausalLM加载预训练模型
model1 = LlamaForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    torch_dtype='auto',
    device_map='auto',
    offload_folder="offload",
    offload_state_dict=True
)

# 使用LlamaTokenizer加载tokenizer
tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path)

# 加载Lora模型
model1 = PeftModel.from_pretrained(model1, peft_model_id)

注意:请将peft_model_id替换为你实际的模型路径。

英文:

You can load like this after pushing. I did using the following snippet successfully .

# pip install peft transformers
import torch
from peft import PeftModel, PeftConfig
from transformers import LlamaTokenizer, LlamaForCausalLM
from accelerate import infer_auto_device_map, init_empty_weights

peft_model_id = "--path--"

config = PeftConfig.from_pretrained(peft_model_id)

model1 = LlamaForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    torch_dtype='auto',
    device_map='auto',
    offload_folder="offload", offload_state_dict = True
)
tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model1 = PeftModel.from_pretrained(model, peft_model_id)

huangapple
  • 本文由 发表于 2023年6月13日 01:34:46
  • 转载请务必保留本文链接:https://go.coder-hub.com/76459034.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定