如何确定两个二维数组之间的相关性?

huangapple go评论103阅读模式
英文:

How to determine correlation between two 2D arrays?

问题

我正在尝试找到两个2D数组之间的相关性。这些数组代表了基于两个参数(电压和磁场)的系统特性。基本上,我想确定一个矩阵相对于另一个矩阵的变化是否存在相关性。

每个矩阵的大小为6x6。完成这个任务的最有效方法是什么?

我尝试使用MATLAB的xcorr2函数,但在解释结果时遇到了困难,因为结果矩阵比输入矩阵大。

英文:

I am trying to find a correlation between two 2D arrays. These arrays represent the characteristics of the system based on two parameters: voltage and magnetic field. Essentially, I want to determine if there is any correlation between changes in one matrix compared to the other.

The size of each matrix is 6x6. What would be the most effective approach to accomplish this?

I attempted to use MATLAB's xcorr2 function, but I encountered difficulties in interpreting the results since the resulting matrix is larger than the input matrices.

答案1

得分: 1

要找出一个矩阵相对于另一个矩阵的变化之间的相关性,您可以使用MATLAB的*corr2()*函数。*corr2()*函数计算两个矩阵之间的相关系数,考虑它们的均值和标准差。

correlation = corr2(mat1, mat2);

得到的相关系数将是一个介于-1和1之间的单一标量值。接近1的正值表示强正相关,接近-1的负值表示强负相关,接近0的值表示没有相关性。

*xcorr2()*函数用于计算两个矩阵之间的二维交叉相关性,不适用于计算代表不同参数的矩阵之间的相关系数。

英文:

To find the correlation between changes in one matrix compared to the other matrix, you can use MATLAB's corr2() function. The corr2() function calculates the correlation coefficient between two matrices, taking into account their mean and standard deviation.

correlation = corr2(mat1, mat2);

The resulting correlation coefficient will be a single scalar value between -1 and 1. A positive value close to 1 indicates a strong positive correlation, a negative value close to -1 indicates a strong negative correlation, and a value close to 0 indicates no correlation.

The xcorr2() function is used for calculating the 2D cross-correlation between two matrices and is not suitable for calculating correlation coefficients between matrices representing different parameters.

huangapple
  • 本文由 发表于 2023年6月1日 00:24:08
  • 转载请务必保留本文链接:https://go.coder-hub.com/76375564.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定