从R中的smooth.spline检索/重现设计矩阵。

huangapple go评论71阅读模式
英文:

Retrieve/reproduce design matrix from smooth.spline in R

问题

我想知道如何检索或复现smooth.spline在内部使用的设计矩阵。似乎smooth.spline没有一种返回该矩阵的方式。因此,我尝试使用bs函数来复制该矩阵。

当我运行smooth.spline并通过all.knots参数指定结点时,与将相同的结点传递给bs函数相比,拟合的参数数量少了一个。有人可以帮助我理解如何在已知一组结点的情况下复制smooth.spline在内部使用的训练矩阵吗?谢谢!

以下是重现此行为的代码:

n = 200
y = rnorm(n=n)
x = runif(n=n)
knots = c(0,seq(0.001,0.999,.01),1)
mod = smooth.spline(x,y,all.knots=knots,keep.stuff=TRUE)

X = bs(x,knots=knots)

dim(X)[2] #105 
length(mod$fit$coef) #104
英文:

I would like to know how to retrieve or reproduce the design matrix used under the hood by smooth.spline. It does not appear that smooth.spline has a way to return this matrix. As such, I am trying to reproduce the matrix by using the bs function.

When I run smooth.spline and specify the knots via the all.knots argument, the number of parameters from the fit is off by one compared to the bspline matrix I get by passing the same knots to the bs function. Can someone help me understand how to reproduce the training matrix that's being used under the hood by smooth.spline given a known set of knots? Thanks!

Here is code that reproduces the behavior:

n = 200
y = rnorm(n=n)
x = runif(n=n)
knots = c(0,seq(0.001,0.999,.01),1)
mod = smooth.spline(x,y,all.knots=knots,keep.stuff=TRUE)

X = bs(x,knots=knots)

dim(X)[2] #105 
length(mod$fit$coef) #104

答案1

得分: 5

这段代码主要是关于如何使用smooth.spline的输出内部数据来获取平滑矩阵的说明。通过将单位矩阵输入smooth.spline,我们可以得到该矩阵(这也是找到线性算子的矩阵的一般方法之一)。

如果只需要平滑矩阵的对角线,则可以使用hatvalues(mod)来获得。

此外,代码中还包括了一些关于矩阵计算的例子和结果。

英文:

This doesn't explain how to use the internal data of the output of smooth.spline to get the smoother matrix but we can get that matrix by pumping an identity matrix through smooth.spline (which is also a general method of finding the matrix of a linear operator). Also see https://www.stat.cmu.edu/~cshalizi/dst/18/hw/02/smoother.matrix.R

set.seed(123)
n <- 200
y <- rnorm(n)
x <- runif(n)
mod <- smooth.spline(x, y, keep.stuff = TRUE)

S <- apply(diag(n), 2, function(y) fitted(smooth.spline(x, y, df = mod$df)))

max(abs(S %*% y - fitted(mod)))
## [1] 2.183287e-08

If you only need the diagonal of the smoother matrix then hatvalues(mod) will give that.

max(abs(diag(S) - hatvalues(mod)))
## [1] 1.676781e-08

This computes a matrix X which satisfies Xb = Sy.

b <- mod$fit$coef
X <- tcrossprod(fitted(mod), b/c(crossprod(b)))

max(abs(X %*% b - S %*% y))
## [1] 4.959864e-09

The equation is satisfied because if X = (Sy)b'/(b'b) then Xb = ((Sy)b'/(b'b))b = (Sy)(b'b)/(b'b) = Sy .

Note that such an X is not unique since if we add vectors orthogonal to b to rows of X then the equation is still satisfied.

Although the X we showed does satisfy the equation asked for I am not sure if it really is what you want. Note that looking at the source we can convert mod$auxM to a list of matrices like this:

aux2Mat <- function(auxM) {
    stopifnot(is.list(auxM),
              identical(vapply(auxM, class, ""),
                        setNames(rep("numeric", 4), c("XWy", "XWX", "Sigma", "R"))))
    ## requireNamespace("Matrix")# want sparse matrices
    nk <- length(XWy <- auxM[["XWy"]])
    list(XWy = XWy,
         XWX =  Matrix::bandSparse(nk, k= 0:3, diagonals= matrix(auxM[[ "XWX" ]], nk,4), symmetric=TRUE),
         Sigma= Matrix::bandSparse(nk, k= 0:3, diagonals= matrix(auxM[["Sigma"]], nk,4), symmetric=TRUE))
}
lM <- aux2Mat(mod$auxM)
A <- lM$XWX + mod$lambda * lM$Sigma
R <- Matrix::chol(A)

The following two lines give the same result:

bb <- solve(A, lM$XWy)
b <- mod$fit$coef

max(abs(b - bb))
## [1] 1.125863e-10

Also these two are the same

crossprod(b, as.matrix(lM$XWX)) %*% b
##            [,1]
## [1,] 0.01597881
crossprod(X %*% b)
##            [,1]
## [1,] 0.01597881

and these two are the same

y %*% X %*% b
##            [,1]
## [1,] 0.02039534
lM$XWy %*% b
##            [,1]
## [1,] 0.02039534

Update

Corrections.

huangapple
  • 本文由 发表于 2023年5月28日 04:24:27
  • 转载请务必保留本文链接:https://go.coder-hub.com/76348893.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定