从Excel工作表中提取数值以使用Python进行所需的计算。

huangapple go评论78阅读模式
英文:

How to extract values from excel worksheets to get desired calculation using python

问题

我有3个Excel工作表,我们称它们为sheet_asheet_bsheet_c

sheet_a中:

  • type
  • formula

sheet_b中:

  • dish
  • ingredient
  • map

sheet_c中:

  • ingredient
  • cost

我发现难以获得成本值,考虑到sheet_a中的成本公式,sheet_b中的映射值以及sheet_c中的成本值。

例如,要获取type_a的成本值:

type_a:

>>> A+B
>>> potato + fish
>>> 6 + 1
7

我想要的是一个值列表,与它们在sheet_a中出现的顺序相同; type_atype_btype_ctype_d

预期输出:

[7, 3, NaN, 3] - NaN表示巧克力在sheet_c中没有值。

到目前为止,我还没有能够获得所需的输出,我已经到了一个阶段,其中我有一个字典,键是类型,值是A和B组合的列表。

英文:

So I have 3 worksheets in excel, let's call them sheet_a, sheet_b and sheet_c.

sheet_a:
     type       formula
0  type_a           A+B
1  type_b             A
2  type_c       A/(A+B)
3  type_d           A/B


sheet_b:
     dish ingredient    map
0  type_a       fish     B
1  type_a     potato     A
2  type_b      bread     A
3  type_c  chocolate     B
4  type_c     carrot     A
5  type_d     potato     A
6  type_d     orange     B

sheet_c:
  ingredient  cost
0       fish   1
1      bread   3
2     carrot   2
3     potato   6
4     orange   2

What I'm finding tricky is trying to get the cost values, given the cost forumla in sheet_a, mapping values in sheet_b and then cost values in sheet_c.

So for example to get the cost value for type_a:

type_a:

>>> A+B
>>> potato + fish
>>> 6 + 1
7

What I want is an output list of values in the same order as they appear in sheet_a; type_a, type_b, type_c and type_d.

Expected output:

[7, 3, NaN, 3] - NaN because chocolate has no value in sheet_c.

So far I haven't been able to get the desired output I've managed to get up to a stage where I have a dictionary with keys as the type and values as a list of A and B combinations

答案1

得分: 1

你可以使用mergepivoteval的组合:

out = (sheet_a
       .merge(sheet_b.merge(sheet_c, on='ingredient')
                     .pivot(index='dish', columns='map', values='cost'),
              left_on='type', right_index=True)
       .groupby('formula', as_index=False, group_keys=False)
       .apply(lambda g: g.eval(f"out = {g.name}"))
       #[list(sheet_a)+['out']] # uncomment to remove intermediates
      )

输出:

     type  formula    A    B  out
0  type_a      A+B  6.0  1.0  7.0
1  type_b        A  3.0  NaN  3.0
2  type_c  A/(A+B)  2.0  NaN  NaN
3  type_d      A/B  6.0  2.0  3.0

(Note: I've provided the code in both English and Chinese, as requested. If you have any specific questions or need further assistance, feel free to ask.)

英文:

You can use a combination of merge, pivot, and eval:

out = (sheet_a
       .merge(sheet_b.merge(sheet_c, on='ingredient')
                     .pivot(index='dish', columns='map', values='cost'),
              left_on='type', right_index=True)
       .groupby('formula', as_index=False, group_keys=False)
       .apply(lambda g: g.eval(f"out = {g.name}"))
       #[list(sheet_a)+['out']] # uncomment to remove intermediates
      )

Output:

     type  formula    A    B  out
0  type_a      A+B  6.0  1.0  7.0
1  type_b        A  3.0  NaN  3.0
2  type_c  A/(A+B)  2.0  NaN  NaN
3  type_d      A/B  6.0  2.0  3.0

huangapple
  • 本文由 发表于 2023年5月22日 19:28:57
  • 转载请务必保留本文链接:https://go.coder-hub.com/76305700.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定