Python替换嵌套的for循环。

huangapple go评论68阅读模式
英文:

Python replace nested for loop

问题

以下是已翻译的代码部分:

import itertools
import numpy as np

t = np.random.rand(3,3,3) 

def foo(T):    

    res = np.zeros((3,3,3))
    
    for a in range(3):
        for b in range(3):
            for c in range(3):
                idx = [a,b,c]
                combinations = list(itertools.permutations(idx, len(idx)))
                idx_arrays = tuple(np.array(idx) for idx in zip(*combinations))     
                res[a, b, c] = (1.0/len(combinations))*np.sum(T[idx_arrays])
        
        
    return res

sol = foo(t)

要使代码更快,您想要替换外部的for循环。是否可以实现这一点?理想情况下,这应该在不使用numpy的einsum方法的情况下完成。

英文:

I have the following code:

import itertools
import numpy as np

t = np.random.rand(3,3,3) 

def foo(T):    

    res = np.zeros((3,3,3))
    
    for a in range(3):
        for b in range(3):
            for c in range(3):
                idx = [a,b,c]
                combinations = list(itertools.permutations(idx, len(idx)))
                idx_arrays = tuple(np.array(idx) for idx in zip(*combinations))     
                res[a, b, c] = (1.0/len(combinations))*np.sum(T[idx_arrays])
        
        
    return res

sol = foo(t)

The code above should be the equivalent to doing:

for a in range(3):
        for b in range(3):
            for c in range(3):
                res2[a,b,c] = (1.0/6)*(
                                        t[a,b,c]
                                        + t[a,c,b]
                                        + t[b,a,c]
                                        + t[b,c,a]
                                        + t[c, a, b]
                                        + t[c,b,a]
                                        )

To make the code faster, I would like to replace the outer for loops. Can this be done? Ideally this should be achieved without using einsum method of numpy.

答案1

得分: 1

以下是翻译好的代码部分:

def foo(t):
    res = np.zeros_like(t).astype(t.dtype)
    A, B, C = t.shape
    for a in range(A):
        for b in range(a, B):
            for c in range(b, C):
                r = (1.0 / 6) * (
                    t[a, b, c]
                    + t[a, c, b]
                    + t[b, a, c]
                    + t[b, c, a]
                    + t[c, a, b]
                    + t[c, b, a]
                )
                res[a, b, c] = r
                res[a, c, b] = r
                res[b, a, c] = r
                res[b, c, a] = r
                res[c, a, b] = r
                res[c, b, a] = r
    return res
英文:

You can start improving by not doing duplicated computations:

def foo(t):
    res = np.zeros_like(t).astype(t.dtype)
    A, B, C = t.shape
    for a in range(A):
        for b in range(a, B):
            for c in range(b, C):
                r = (1.0 / 6) * (
                    t[a, b, c]
                    + t[a, c, b]
                    + t[b, a, c]
                    + t[b, c, a]
                    + t[c, a, b]
                    + t[c, b, a]
                )
                res[a, b, c] = r
                res[a, c, b] = r
                res[b, a, c] = r
                res[b, c, a] = r
                res[c, a, b] = r
                res[c, b, a] = r
    return res

答案2

得分: 1

A one-liner, using np.transpose to vectorize:

np.stack([t.transpose(i) for i in itertools.permutations(np.arange(3), 3)]).mean(0)

Those 3s can be changed or functionalized if you want higher dimensionality than 3

import numpy as np
from itertools import permutations as perm

import numpy as np
from itertools import permutations as perm

def foo(T):
    dims = len(T.shape)
    assert np.all(np.array(T.shape) == T.shape[0])
    all_perms = np.stack([T.transpose(i) for i in perm(np.arange(dims), dims)])
    return all_perms.mean(0)
英文:

A one-liner, using np.transpose to vectorize:

np.stack([t.transpose(i) for i in itertools.permutations(np.arange(3), 3)]).mean(0)

Those 3s can be changed or functionalized if you want higher dimensionality than 3

import numpy as np
from itertools import permutations as perm

import numpy as np
from itertools import permutations as perm

def foo(T):
    dims = len(T.shape)
    assert np.all(np.array(T.shape) == T.shape[0])
    all_perms = np.stack([T.transpose(i) for i in perm(np.arange(dims), dims)])
    return all_perms.mean(0)

答案3

得分: 0

我不知道这是否比三重嵌套循环更快。无论如何,你可以尝试这样做:

import itertools
import numpy as np

t = np.random.rand(3,3,3)

def foo(T):    
    t = np.random.rand(3,3,3) 
    res = np.zeros((3,3,3))
    
    for a, b, c in set(itertools.permutations((0, 0, 0, 1, 1, 1, 2, 2, 2), 3)):
        idx = [a,b,c]
        combinations = list(itertools.permutations(idx, len(idx)))
        idx_arrays = tuple(np.array(idx) for idx in zip(*combinations))     
        res[a, b, c] = (1.0/len(combinations))*np.sum(t[idx_arrays])
        
        
    return res

sol = foo(t)
英文:

I don't know whether this is faster than 3 nested for loops. Anyways you can try this:

import itertools
import numpy as np

t = np.random.rand(3,3,3)

def foo(T):    
    t = np.random.rand(3,3,3) 
    res = np.zeros((3,3,3))
    
    for a, b, c in set(itertools.permutations((0, 0, 0, 1, 1, 1, 2, 2, 2), 3)):
        idx = [a,b,c]
        combinations = list(itertools.permutations(idx, len(idx)))
        idx_arrays = tuple(np.array(idx) for idx in zip(*combinations))     
        res[a, b, c] = (1.0/len(combinations))*np.sum(t[idx_arrays])
        
        
    return res

sol = foo(t)

Here, instead of using 3 nested for loops I am creating unique permutations of 3 elements from the tuple (0, 0, 0, 1, 1, 1, 2, 2, 2).

答案4

得分: 0

这段代码的大致含义是:通过改变np.indices的输出形状来生成idx_arrays,然后使用高级索引从原始数组中汇总值,并除以排列组合的数量。最后,将结果重新形状为一个3x3x3的数组。

这段代码以更高效的方式产生与原始代码相同的结果,利用了NumPy的向量化操作。

在我的机器上,foo(t) 耗时约261微秒,foo2(t) 耗时约36.7微秒。

英文:

What about this solution?

def foo2(T):
    indices = np.indices((3, 3, 3)).reshape(3, -1)
    all_permutations = np.array(list(itertools.permutations(indices, len(indices))))
    idx_arrays = tuple(np.array(idx) for idx in zip(*all_permutations))
    summed = np.sum(T[tuple(idx_arrays)], axis=0)
    res = (1.0 / len(all_permutations)) * summed
    return res.reshape(3, 3, 3)

In short, you reshape the output of np.indices to generate the idx_arrays. Then you sum the values from the original array using advanced indexing and divide by the number of permutations. Finally, reshape the result back to a 3x3x3 array.

This code produces the same results as the original one but in a more efficient manner by leveraging the power of NumPy's vectorized operations.

On my machine:

%%timeit foo(t)
%%timeit foo2(t)
261 µs ± 4.36 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
36.7 µs ± 296 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

huangapple
  • 本文由 发表于 2023年5月11日 17:31:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/76226149.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定