Oakley组的2个质数包含π,一个无理数。

huangapple go评论61阅读模式
英文:

Oakley group 2 prime number contains pi, an irrational number

问题

Oakley 第二组的函数, p = 2^1024 - 2^960 - 1 + 2^64 * ⌊2^894 * π + 129093⌋,产生一个质数。其中包含圆周率π,一个无理数。方程中含有无理数如何产生一个有理数的乘积让我感到好奇。在网上找不到答案。在我的数学结构课上学到,有理数和无理数的乘积是无理数,所以我想知道圆周率如何用来产生一个质数。

英文:

The function for Oakley group 2, p = 2^1024 - 2^960 - 1 + 2^64 * ⌊2^894 * π + 129093⌋, produces a prime number. It contains pi, an irrational number. How can an equation containing an irrational number produce a rational product?

I looked on the internet and could not find an answer. I learned in my mathematical structures class that the product of a rational and irrational number is irrational so this makes me wonder how pi is used to produce a prime.

答案1

得分: 1

Rossum已经在评论中回答了你的问题,但我将更详细地解释一下这个素数的结构。

正如Rossum所说,⌊2^894 * π + 129093⌋部分中的⌊⌋表示数学地板函数,它产生小于或等于参数的最大整数。2^1024 - 2^960产生一个数字,其中前64位是1。将⌊2^894 * π + 129093⌋乘以2^64并减去1,得到一个数字,其中最后64位是1。将这两者结合在一起,我们得到一个数字,其中前64位和最后64位都是1,因为在这两者相加时不会进位。

⌊2^894 * π + 129093⌋中,π被乘以2^894以提取896位(1024-64-64)π的位。+ 129093只是一个偏移量,使整体结果为素数。

英文:

Rossum already answered your question in the comments, but I'm going to elaborate a bit more on the structure of this prime.

As Rossum says, the ⌊⌋ in the ⌊2^894 * π + 129093⌋ portion denote the mathematical floor function, yielding the largest integer less than or equal to the argument. The 2^1024 - 2^960 produces a number where the first 64 bits are 1s. Multiplying the ⌊2^894 * π + 129093⌋ by 2^64 and subtracting 1 produces a number where the last 64 bits are 1s. Combining these, we have a number where the first and last 64 bits are ones, since there will be no carrying in the addition of the two.

Within the ⌊2^894 * π + 129093⌋, pi is multiplied by 2^894 to extract 896 bits (1024-64-64)bits of pi. The+ 129093` is just an offset to make the overall result prime.

huangapple
  • 本文由 发表于 2023年5月7日 15:38:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/76192704.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定