如何在分隔符处拆分字符列并创建新的二进制列?

huangapple go评论71阅读模式
英文:

How to split character column at divider and create new binary columns?

问题

我有一个名为df_cat的数据框,看起来像这样:

dput(df_cat)

结构(list(Name = c("Name1", "Name2", "Name3", "Name4", "Name5", 
"Name6"), Category = c("App", "App, Comms_2", "App, Comms, Tech", 
"App, Tech", "Comms, Tech", "BS, Tech")), class = "data.frame", row.names = c(NA, 
-6L))

我想要将Category列以**","**为分隔符拆分,并为每个输入创建新列,前面带有原始列名。这些列应该是二进制的,指示一行是否包含这个类别(1)或不包含(0):

Name   Category_App  Category_Comms_2  Category_Tech  Category_BS
Name1  1             0                 0              0
Name2  1             1                 0              0
Name3  1             1                 1              0
Name4  1             0                 1              0
Name5  0             1                 1              0
Name6  0             0                 1              1

您知道我如何在一个数据集中实现这个目标吗?该数据集有超过23k行和100多个不同的类别。

英文:

I have a dataframe df_cat looking like this:

dput(df_cat)

structure(list(Name = c("Name1", "Name2", "Name3", "Name4", "Name5", 
"Name6"), Category = c("App", "App, Comms_2", "App, Comms, Tech", 
"App, Tech", "Comms, Tech", "BS, Tech")), class = "data.frame", row.names = c(NA, 
-6L))

I want to split column Category at the divider "," and create new columns for each input with the original column name in front. These columns should be binary and indicate, whether a row contains this category (1) or not (0):

Name   Category_App  Category_Comms_2  Category_Tech  Category_BS
Name1  1             0                 0              0
Name2  1             1                 0              0
Name3  1             1                 1              0
Name4  1             0                 1              0
Name5  0             1                 1              0
Name6  0             0                 1              1

Any idea how I can accomplish this in a dataset, that has over 23k rows and over 100 different categories?

答案1

得分: 3

可以使用 separate_rowspivot_wider 轻松实现:

library(tidyverse)
df %>%
   mutate(row = row_number()) %>%
   separate_rows(Category) %>%
   pivot_wider(names_from = Category, values_from = Category,
               names_prefix = "Category_",
               values_fn = function(x) 1, values_fill = 0) %>%
   select(-row)
# 一个 tibble: 6 × 5
  Name  Category_App Category_Comms Category_Tech Category_BS
  <chr>        <dbl>          <dbl>         <dbl>       <dbl>
1 Name1            1              0             0           0
2 Name2            1              1             0           0
3 Name3            1              1             1           0
4 Name4            1              0             1           0
5 Name5            0              1             1           0
6 Name6            0              0             1           1

如果要保留原始 category 列,请使用 bind_cols 添加:

df %>%
   mutate(row = row_number()) %>%
   separate_rows(Category) %>%
   pivot_wider(names_from = Category, values_from = Category,
               names_prefix = "Category_",
               values_fn = function(x) 1, values_fill = 0) %>%
   select(-row) %>%
   bind_cols(., df %>% select(Category))
# 一个 tibble: 6 × 6
  Name  Category_App Category_Comms Category_Tech Category_BS Category        
  <chr>        <dbl>          <dbl>         <dbl>       <dbl> <chr>           
1 Name1            1              0             0           0 App             
2 Name2            1              1             0           0 App, Comms      
3 Name3            1              1             1           0 App, Comms, Tech
4 Name4            1              0             1           0 App, Tech       
5 Name5            0              1             1           0 Comms, Tech  
6 Name6            0              0             1           1 BS, Tech
英文:

This can be done easily with separate_rows and pivot_wider:

library(tidyverse)
df %&gt;%
   mutate(row = row_number()) %&gt;%
   separate_rows(Category) %&gt;%
   pivot_wider(names_from = Category, values_from = Category,
               names_prefix = &quot;Category_&quot;,
               values_fn = function(x) 1, values_fill = 0) %&gt;%
   select(-row)
# A tibble: 6 &#215; 5
  Name  Category_App Category_Comms Category_Tech Category_BS
  &lt;chr&gt;        &lt;dbl&gt;          &lt;dbl&gt;         &lt;dbl&gt;       &lt;dbl&gt;
1 Name1            1              0             0           0
2 Name2            1              1             0           0
3 Name3            1              1             1           0
4 Name4            1              0             1           0
5 Name5            0              1             1           0
6 Name6            0              0             1           1

If you want to retain the original category column, add it with bind_cols:

df %&gt;%
   mutate(row = row_number()) %&gt;%
   separate_rows(Category) %&gt;%
   pivot_wider(names_from = Category, values_from = Category,
               names_prefix = &quot;Category_&quot;,
               values_fn = function(x) 1, values_fill = 0) %&gt;%
   select(-row) %&gt;%
   bind_cols(., df %&gt;% select(Category))
# A tibble: 6 &#215; 6
  Name  Category_App Category_Comms Category_Tech Category_BS Category        
  &lt;chr&gt;        &lt;dbl&gt;          &lt;dbl&gt;         &lt;dbl&gt;       &lt;dbl&gt; &lt;chr&gt;           
1 Name1            1              0             0           0 App             
2 Name2            1              1             0           0 App, Comms      
3 Name3            1              1             1           0 App, Comms, Tech
4 Name4            1              0             1           0 App, Tech       
5 Name5            0              1             1           0 Comms, Tech  
6 Name6            0              0             1           1 BS, Tech

答案2

得分: 0

如果您事先知道可能的类别,甚至可以硬编码它们:

英文:

If you know the possible categories up front, you could even just hard-code them:

library(tidyverse)

df &lt;- tibble::tribble(
          ~Name,          ~Category,
        &quot;Name1&quot;,              &quot;App&quot;,
        &quot;Name2&quot;,       &quot;App, Comms&quot;,
        &quot;Name3&quot;, &quot;App, Comms, Tech&quot;,
        &quot;Name4&quot;,        &quot;App, Tech&quot;,
        &quot;Name5&quot;,      &quot;Comms, Tech&quot;,
        &quot;Name6&quot;,         &quot;BS, Tech&quot;
        )

df |&gt; 
  mutate(
    Category_App = str_detect(Category, &quot;App&quot;),
    Category_Comms = str_detect(Category, &quot;Comms&quot;),
    Category_Tech = str_detect(Category, &quot;Tech&quot;),
    Category_BS = str_detect(Category, &quot;BS&quot;)
  )
#&gt; # A tibble: 6 &#215; 6
#&gt;   Name  Category         Category_App Category_Comms Category_Tech Category_BS
#&gt;   &lt;chr&gt; &lt;chr&gt;            &lt;lgl&gt;        &lt;lgl&gt;          &lt;lgl&gt;         &lt;lgl&gt;      
#&gt; 1 Name1 App              TRUE         FALSE          FALSE         FALSE      
#&gt; 2 Name2 App, Comms       TRUE         TRUE           FALSE         FALSE      
#&gt; 3 Name3 App, Comms, Tech TRUE         TRUE           TRUE          FALSE      
#&gt; 4 Name4 App, Tech        TRUE         FALSE          TRUE          FALSE      
#&gt; 5 Name5 Comms, Tech      FALSE        TRUE           TRUE          FALSE      
#&gt; 6 Name6 BS, Tech         FALSE        FALSE          TRUE          TRUE

<sup>Created on 2023-03-20 with reprex v2.0.2</sup>

答案3

得分: 0

使用data.table

library(data.table)
setDT(df)

df[, unlist(strsplit(Category, "(,| )+")), by = Name
   ][, dcast(.SD, Name ~ paste0("Category_", V1), length)]
#      Name Category_App Category_BS Category_Comms Category_Tech
#    <char>        <int>       <int>          <int>         <int>
# 1:  Name1            1           0              0             0
# 2:  Name2            1           0              1             0
# 3:  Name3            1           0              1             1
# 4:  Name4            1           0              0             1
# 5:  Name5            0           0              1             1
# 6:  Name6            0           1              0             1
英文:

Using data.table

library(data.table)
setDT(df)

df[, unlist(strsplit(Category, &quot;(,| )+&quot;)), by = Name
   ][, dcast(.SD, Name ~ paste0(&quot;Category_&quot;, V1), length)]

#      Name Category_App Category_BS Category_Comms Category_Tech
#    &lt;char&gt;        &lt;int&gt;       &lt;int&gt;          &lt;int&gt;         &lt;int&gt;
# 1:  Name1            1           0              0             0
# 2:  Name2            1           0              1             0
# 3:  Name3            1           0              1             1
# 4:  Name4            1           0              0             1
# 5:  Name5            0           0              1             1
# 6:  Name6            0           1              0             1

答案4

得分: 0


库(stringr)
库(magrittr)

# 获取所有可能类别的向量

all_categories <- df_cat$Category %>% 
                   str_split(",") %>%
                   unlist() %>%
                  str_squish() %>%
                    unique()

# 遍历所有类别
for( category in all_categories){

  # 为每个类别创建一列
  # 然后检查Category列中是否存在该类别
  df_cat[,category] <- str_detect(df_cat$Category,category) %>%
                        as.numeric()

}

英文:

library(stringr)
library(magrittr)

# get vector of all the possible categories

all_categories &lt;- df_cat$Category %&gt;% 
                   str_split(&quot;,&quot;) %&gt;%      # split at comma
                   unlist() %&gt;%            # convert from list to vector
                  str_squish() %&gt;%         # remove excess white space
                    unique()               # find unique values


# loop through all the categories 
for( category in all_categories){
  
  # create a column for each category
  # Then check for the category in the Category column
  df_cat[,category] &lt;- str_detect(df_cat$Category,category) %&gt;%      
                        as.numeric()               # convert TRUE/FALSE to 0/1
  
  
  
}

答案5

得分: 0

在基本R中,你可以这样做:

    a <- table(stack(setNames(strsplit(df$Category, "[, ]+"), df$Name))[2:1])

    data.frame(df, as.data.frame.matrix(a), row.names = NULL)

       Name         Category App BS Comms Tech
    1 Name1              App   1  0     0    0
    2 Name2       App, Comms   1  0     1    0
    3 Name3 App, Comms, Tech   1  0     1    1
    4 Name4        App, Tech   1  0     0    1
    5 Name5      Comms, Tech   0  0     1    1
    6 Name6         BS, Tech   0  1     0    1
英文:

in base R you could do:

a &lt;- table(stack(setNames(strsplit(df$Category, &quot;[, ]+&quot;), df$Name))[2:1])

data.frame(df, as.data.frame.matrix(a), row.names = NULL)

   Name         Category App BS Comms Tech
1 Name1              App   1  0     0    0
2 Name2       App, Comms   1  0     1    0
3 Name3 App, Comms, Tech   1  0     1    1
4 Name4        App, Tech   1  0     0    1
5 Name5      Comms, Tech   0  0     1    1
6 Name6         BS, Tech   0  1     0    1

huangapple
  • 本文由 发表于 2023年3月21日 00:23:21
  • 转载请务必保留本文链接:https://go.coder-hub.com/75792845.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定