英文:
Applying conditional functions on multiple columns of a dataframe, based on values of a variable
问题
以下是代码的翻译部分:
我有一个包含一个标识我的分组的因子变量(这里是 `y`)和多个数值变量的数据框(为了简化,这里只显示两个 `x` 和 `z`):
```R
df = tribble(
~x, ~y, ~z,
1, "a", 5,
2, "b", 6,
3, "a", 7,
4, "b", 8,
5, "a", 9,
6, "b", 10
)
我想要在我的数据框中添加新列,其中我根据因子变量(y)的值对这些数值变量(x 和 z)应用不同的数学函数。对于上面的示例数据框:所有具有 y == "a"
的观察值将添加1,而具有 y == "b"
的观察值将添加2。
这是我的代码:
df %>% mutate(x_new = case_when(grepl("a", y) ~ x + 1,
grepl("b", y) ~ x + 2))
输出
A tibble: 6 × 4
x y z x_new
1 1 a 5 2
2 2 b 6 4
3 3 a 7 4
4 4 b 8 6
5 5 a 9 6
6 6 b 10 8
我的代码可以用于添加一个变量,但我希望对所有数值变量应用相同的函数,因此在示例中,我还希望对“z”变量应用这些函数,并将值存储在另一个新列中。由于我有许多数值列,我不想手动使用上面的方法逐个进行变异。有关如何实现这一点的建议吗?(尤其是 tidyverse 解决方案,但任何帮助都非常感激。)
如果您需要更多帮助,请告诉我。
<details>
<summary>英文:</summary>
I have a dataframe with a factor variable identifying my groups (here `y`), and multiple numerical variables (to simplify, here I only show two `x` and `z`):
df = tribble(
~x, ~y, ~z,
1, "a", 5,
2, "b", 6,
3, "a", 7,
4, "b", 8,
5, "a", 9,
6, "b", 10
)
I want to add new columns to my dataframe in which I apply different mathematical functions on those numerical variables (x and z), based on the values of the factor variable (y). For the example dataframe above: all observations with `y == "a"` are added with 1, and the ones with `y == "b"` are added with 2.
This is my code to do it:
df %>% mutate(x_new = case_when(grepl("a", y) ~ x + 1,
grepl("b", y) ~ x + 2))
Output
A tibble: 6 × 4
x y z x_new
<dbl> <chr> <dbl> <dbl>
1 1 a 5 2
2 2 b 6 4
3 3 a 7 4
4 4 b 8 6
5 5 a 9 6
6 6 b 10 8
My code works OK for adding one variable, but I want to apply the same functions for ALL the numerical variables, so in the example I want to apply the functions to the "z" variable as well and store the values in another new column. Since I have many numerical columns I don't want to manually mutate them one by one with the approach above. Any advice on how to do this? (specially tidyverse solutions but any help is very appreciated)
</details>
# 答案1
**得分**: 2
```R
# 进行匹配以将a、b与1、2匹配。然后将其添加到df,排除y列。
ll <- setNames(c(1, 2), c("a", "b"))
x <- df[, -2] + ll[df$y]
colnames(x) <- paste0(colnames(x), "_new")
# 将x列与原始数据框合并
cbind(df, x)
# x y z x_new z_new
# 1 2 a 6 3 7
# 2 4 b 8 6 10
# 3 4 a 8 5 9
# 4 6 b 10 8 12
# 5 6 a 10 7 11
# 6 8 b 12 10 14
英文:
Make a lookup to match a, b with 1,2. Then add to df excluding y column. Finally, suffix with "_new"
and column bind back to original dataframe:
ll <- setNames(c(1, 2), c("a", "b"))
x <- df[, -2 ] + ll[ df$y ]
colnames(x) <- paste0(colnames(x), "_new")
cbind(df, x)
# x y z x_new z_new
# 1 2 a 6 3 7
# 2 4 b 8 6 10
# 3 4 a 8 5 9
# 4 6 b 10 8 12
# 5 6 a 10 7 11
# 6 8 b 12 10 14
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论