如何在分组的柱形图上显示自定义数值?

huangapple go评论114阅读模式
英文:

How can I display custom values over grouped bars?

问题

这是你要翻译的内容:

  1. I have a barplot with this values in a `dict` for the C/C):
  2. {'Country Name': {0: 'United States',
  3. 1: 'United States',
  4. 2: 'United States',
  5. 3: 'United States',
  6. 4: 'Russian Federation',
  7. 5: 'Russian Federation',
  8. 6: 'Russian Federation',
  9. 7: 'Russian Federation',
  10. 8: 'Japan',
  11. 9: 'Japan',
  12. 10: 'Japan',
  13. 11: 'Japan',
  14. 12: 'Germany',
  15. 13: 'Germany',
  16. 14: 'Germany',
  17. 15: 'Germany',
  18. 16: 'France',
  19. 17: 'France',
  20. 18: 'France',
  21. 19: 'France'},
  22. 'Indicator Name': {0: 'Population, total',
  23. 1: 'Population, ages 0-14, total',
  24. 2: 'Population, ages 15-64, total',
  25. 3: 'Population, ages 65+, total',
  26. 4: 'Population, total',
  27. 5: 'Population, ages 0-14, total',
  28. 6: 'Population, ages 15-64, total',
  29. 7: 'Population, ages 65+, total',
  30. 8: 'Population, total',
  31. 9: 'Population, ages 0-14, total',
  32. 10: 'Population, ages 15-64, total',
  33. 11: 'Population, ages 65+, total',
  34. 12: 'Population, total',
  35. 13: 'Population, ages 0-14, total',
  36. 14: 'Population, ages 15-64, total',
  37. 15: 'Population, ages 65+, total',
  38. 16: 'Population, total',
  39. 17: 'Population, ages 0-14, total',
  40. 18: 'Population, ages 15-64, total',
  41. 19: 'Population, ages 65+, total'},
  42. 'Valeur': {0: 320896618.0,
  43. 1: 61653419.0,
  44. 2: 212262832.0,
  45. 3: 46980367.0,
  46. 4: 144096870.0,
  47. 5: 24255306.0,
  48. 6: 100404879.0,
  49. 7: 19436685.0,
  50. 8: 127141000.0,
  51. 9: 16517168.0,
  52. 10: 77547638.0,
  53. 11: 33076194.0,
  54. 12: 81686611.0,
  55. 13: 10716271.0,
  56. 14: 53720119.0,
  57. 15: 17250221.0,
  58. 16: 66624068.0,
  59. 17: 12168975.0,
  60. 18: 41837530.0,
  61. 19: 12617563.0}}
  62. Code for the barplot (with the ax because I tried containers):
  63. ax = plt.figure(figsize=(10,5))
  64. ax = sns.barplot(data = Graph1values, x = 'Country Name', y = 'Valeur', hue = 'Indicator Name',palette="dark")
  65. ax = plt.xlabel('')
  66. ax = plt.ylabel('Nombre de personnes', size = 15)
  67. ax = plt.title('Etude de la répartition de la population', size = 20)
  68. ax = plt.show()
  69. [![enter image description here][1]][1]
  70. I want to add these values on top of the bars
  71. x = ['100%', '19%', '66%', '15%', '100%', '17%', '70%', '13%', '100%', '13%', '61%', '26%', '100%',
  72. '13%', '66%', '21%', '100%', '18%', '63%', '19%']
  73. I tried with containers, but it does not work.

只提供翻译,不包括问题的回答:

  1. 我有一个条形图其中包含一个`dict`中的这些值用于C/C):
  2. {'Country Name': {0: '美国',
  3. 1: '美国',
  4. 2: '美国',
  5. 3: '美国',
  6. 4: '俄罗斯联邦',
  7. 5: '俄罗斯联邦',
  8. 6: '俄罗斯联邦',
  9. 7: '俄罗斯联邦',
  10. 8: '日本',
  11. 9: '日本',
  12. 10: '日本',
  13. 11: '日本',
  14. 12: '德国',
  15. 13: '德国',
  16. 14: '德国',
  17. 15: '德国',
  18. 16: '法国',
  19. <details>
  20. <summary>英文:</summary>
  21. I have a barplot with this values in a `dict` for the C/C):
  22. {&#39;Country Name&#39;: {0: &#39;United States&#39;,
  23. 1: &#39;United States&#39;,
  24. 2: &#39;United States&#39;,
  25. 3: &#39;United States&#39;,
  26. 4: &#39;Russian Federation&#39;,
  27. 5: &#39;Russian Federation&#39;,
  28. 6: &#39;Russian Federation&#39;,
  29. 7: &#39;Russian Federation&#39;,
  30. 8: &#39;Japan&#39;,
  31. 9: &#39;Japan&#39;,
  32. 10: &#39;Japan&#39;,
  33. 11: &#39;Japan&#39;,
  34. 12: &#39;Germany&#39;,
  35. 13: &#39;Germany&#39;,
  36. 14: &#39;Germany&#39;,
  37. 15: &#39;Germany&#39;,
  38. 16: &#39;France&#39;,
  39. 17: &#39;France&#39;,
  40. 18: &#39;France&#39;,
  41. 19: &#39;France&#39;},
  42. &#39;Indicator Name&#39;: {0: &#39;Population, total&#39;,
  43. 1: &#39;Population, ages 0-14, total&#39;,
  44. 2: &#39;Population, ages 15-64, total&#39;,
  45. 3: &#39;Population, ages 65+, total&#39;,
  46. 4: &#39;Population, total&#39;,
  47. 5: &#39;Population, ages 0-14, total&#39;,
  48. 6: &#39;Population, ages 15-64, total&#39;,
  49. 7: &#39;Population, ages 65+, total&#39;,
  50. 8: &#39;Population, total&#39;,
  51. 9: &#39;Population, ages 0-14, total&#39;,
  52. 10: &#39;Population, ages 15-64, total&#39;,
  53. 11: &#39;Population, ages 65+, total&#39;,
  54. 12: &#39;Population, total&#39;,
  55. 13: &#39;Population, ages 0-14, total&#39;,
  56. 14: &#39;Population, ages 15-64, total&#39;,
  57. 15: &#39;Population, ages 65+, total&#39;,
  58. 16: &#39;Population, total&#39;,
  59. 17: &#39;Population, ages 0-14, total&#39;,
  60. 18: &#39;Population, ages 15-64, total&#39;,
  61. 19: &#39;Population, ages 65+, total&#39;},
  62. &#39;Valeur&#39;: {0: 320896618.0,
  63. 1: 61653419.0,
  64. 2: 212262832.0,
  65. 3: 46980367.0,
  66. 4: 144096870.0,
  67. 5: 24255306.0,
  68. 6: 100404879.0,
  69. 7: 19436685.0,
  70. 8: 127141000.0,
  71. 9: 16517168.0,
  72. 10: 77547638.0,
  73. 11: 33076194.0,
  74. 12: 81686611.0,
  75. 13: 10716271.0,
  76. 14: 53720119.0,
  77. 15: 17250221.0,
  78. 16: 66624068.0,
  79. 17: 12168975.0,
  80. 18: 41837530.0,
  81. 19: 12617563.0}}
  82. Code for the barplot (with the ax because I tried containers):
  83. ax = plt.figure(figsize=(10,5))
  84. ax = sns.barplot(data = Graph1values, x = &#39;Country Name&#39;, y = &#39;Valeur&#39;, hue = &#39;Indicator Name&#39;,palette=&quot;dark&quot;)
  85. ax = plt.xlabel(&#39;&#39;)
  86. ax = plt.ylabel(&#39;Nombre de personnes&#39;, size = 15)
  87. ax = plt.title(&#39;Etude de la r&#233;partition de la population&#39;, size = 20)
  88. ax = plt.show()
  89. [![enter image description here][1]][1]
  90. **I want to add these values on top of the bars**
  91. x = [&#39;100%&#39;, &#39;19%&#39;, &#39;66%&#39;, &#39;15%&#39;, &#39;100%&#39;, &#39;17%&#39;, &#39;70%&#39;, &#39;13%&#39;, &#39;100%&#39;, &#39;13%&#39;, &#39;61%&#39;, &#39;26%&#39;, &#39;100%&#39;,
  92. &#39;13%&#39;, &#39;66%&#39;, &#39;21%&#39;, &#39;100%&#39;, &#39;18%&#39;, &#39;63%&#39;, &#39;19%&#39;]
  93. I tried with containers, but it does not work.
  94. [1]: https://i.stack.imgur.com/mjYqF.png
  95. </details>
  96. # 答案1
  97. **得分**: 1
  98. 以下是翻译的内容
  99. - 似乎`dict`必须是DataFrame的输出但这不在问题中显示
  100. - 使用[`.bar_label`][1]来在每个条形图的顶部添加自定义标签[如何在条形图上添加值标签][2]中有该方法的详细解释
  101. - 使用条形图的高度(`h`)`country`和容器`label`以及DataFrame上的[布尔索引][3]以获取正确的`'percents'`来注释条形图
  102. - [此问题][4]的答案没有展示如何获取条形图的自定义值
  103. - 不要将所有行分配给`ax`因为它们不返回`matplotlib.axes`这会覆盖`ax`因此`ax.bar_label`不起作用
  104. - `plt.xlabel``plt.ylabel``plt.title`返回`matplotlib.text.Text`
  105. - 使用`ax = plt.show()``type(ax) NoneType`因为`plt.show`不返回任何内容
  106. - **`python 3.11``pandas 1.5.3``matplotlib 3.7.1``seaborn 0.12.2`中进行了测试**
  107. [![在此输入图片描述][5]][5]
  108. ## `df`
  109. ```python
  110. Country Name Indicator Name Valeur percents
  111. 0 United States Population, total 320896618.0 100%
  112. 1 United States Population, ages 0-14, total 61653419.0 19%
  113. 2 United States Population, ages 15-64, total 212262832.0 66%
  114. 3 United States Population, ages 65+, total 46980367.0 15%
  115. 4 Russian Federation Population, total 144096870.0 100%
  116. 5 Russian Federation Population, ages 0-14, total 24255306.0 17%
  117. 6 Russian Federation Population, ages 15-64, total 100404879.0 70%
  118. 7 Russian Federation Population, ages 65+, total 19436685.0 13%
  119. 8 Japan Population, total 127141000.0 100%
  120. 9 Japan Population, ages 0-14, total 16517168.0 13%
  121. 10 Japan Population, ages 15-64, total 77547638.0 61%
  122. 11 Japan Population, ages 65+, total 33076194.0 26%
  123. 12 Germany Population, total 81686611.0 100%
  124. 13 Germany Population, ages 0-14, total 10716271.0 13%
  125. 14 Germany Population, ages 15-64, total 53720119.0 66%
  126. 15 Germany Population, ages 65+, total 17250221.0 21%
  127. 16 France Population, total 66624068.0 100%
  128. 17 France Population, ages 0-14, total 12168975.0 18%
  129. 18 France Population, ages 15-64, total 41837530.0 63%
  130. 19 France Population, ages 65+, total 12617563.0 19%
英文:
  • It seems the dict must be the output of a DataFrame, which isn't shown in the OP.
  • Use .bar_label to add custom labels to the top of each bar. How to add value labels on a bar chart has a thorough explanation of the method.
    • Use the bar height (h), country, and container label, with Boolean indexing on df, to get the correct &#39;percents&#39; to annotate the bars.
    • The answers to this question do not demonstrate how to get the custom values for the bars.
  • Do not assign all lines to ax, as they do not return a matplotlib.axes. This overwrites ax, so ax.bar_label won't work.
    • plt.xlabel, plt.ylabel, and plt.title return matplotlib.text.Text.
    • With ax = plt.show(), type(ax) → NoneType because plt.show doesn't return anything.
  • Tested in python 3.11, pandas 1.5.3, matplotlib 3.7.1, seaborn 0.12.2
  1. import pandas as pd
  2. import matplotlib.pyplot as plt
  3. import seaborn as sns
  4. # create the dataframe
  5. data = {&#39;Country Name&#39;: {0: &#39;United States&#39;, 1: &#39;United States&#39;, 2: &#39;United States&#39;, 3: &#39;United States&#39;, 4: &#39;Russian Federation&#39;, 5: &#39;Russian Federation&#39;, 6: &#39;Russian Federation&#39;, 7: &#39;Russian Federation&#39;, 8: &#39;Japan&#39;, 9: &#39;Japan&#39;, 10: &#39;Japan&#39;, 11: &#39;Japan&#39;, 12: &#39;Germany&#39;, 13: &#39;Germany&#39;, 14: &#39;Germany&#39;, 15: &#39;Germany&#39;, 16: &#39;France&#39;, 17: &#39;France&#39;, 18: &#39;France&#39;, 19: &#39;France&#39;},
  6. &#39;Indicator Name&#39;: {0: &#39;Population, total&#39;, 1: &#39;Population, ages 0-14, total&#39;, 2: &#39;Population, ages 15-64, total&#39;, 3: &#39;Population, ages 65+, total&#39;, 4: &#39;Population, total&#39;, 5: &#39;Population, ages 0-14, total&#39;, 6: &#39;Population, ages 15-64, total&#39;, 7: &#39;Population, ages 65+, total&#39;, 8: &#39;Population, total&#39;, 9: &#39;Population, ages 0-14, total&#39;, 10: &#39;Population, ages 15-64, total&#39;, 11: &#39;Population, ages 65+, total&#39;, 12: &#39;Population, total&#39;, 13: &#39;Population, ages 0-14, total&#39;, 14: &#39;Population, ages 15-64, total&#39;, 15: &#39;Population, ages 65+, total&#39;, 16: &#39;Population, total&#39;, 17: &#39;Population, ages 0-14, total&#39;, 18: &#39;Population, ages 15-64, total&#39;, 19: &#39;Population, ages 65+, total&#39;},
  7. &#39;Valeur&#39;: {0: 320896618.0, 1: 61653419.0, 2: 212262832.0, 3: 46980367.0, 4: 144096870.0, 5: 24255306.0, 6: 100404879.0, 7: 19436685.0, 8: 127141000.0, 9: 16517168.0, 10: 77547638.0, 11: 33076194.0, 12: 81686611.0, 13: 10716271.0, 14: 53720119.0, 15: 17250221.0, 16: 66624068.0, 17: 12168975.0, 18: 41837530.0, 19: 12617563.0}}
  8. df = pd.DataFrame(data)
  9. # add the list of percent values to the dataframe, which assumes they&#39;re in the correct order (as they appear to be)
  10. df[&#39;percents&#39;] = [&#39;100%&#39;, &#39;19%&#39;, &#39;66%&#39;, &#39;15%&#39;, &#39;100%&#39;, &#39;17%&#39;, &#39;70%&#39;, &#39;13%&#39;, &#39;100%&#39;, &#39;13%&#39;, &#39;61%&#39;, &#39;26%&#39;, &#39;100%&#39;, &#39;13%&#39;, &#39;66%&#39;, &#39;21%&#39;, &#39;100%&#39;, &#39;18%&#39;, &#39;63%&#39;, &#39;19%&#39;]
  11. # create the plot
  12. fig, ax = plt.subplots(figsize=(10, 5))
  13. sns.barplot(data=df, x=&#39;Country Name&#39;, y=&#39;Valeur&#39;, hue=&#39;Indicator Name&#39;, palette=&quot;dark&quot;, ax=ax)
  14. # customize the plot labels and title
  15. plt.xlabel(&#39;&#39;)
  16. plt.ylabel(&#39;Nombre de personnes&#39;, size=15)
  17. plt.title(&#39;Etude de la r&#233;partition de la population&#39;, size=20)
  18. # list of countries for selecting data from df
  19. countries = [v.get_text() for v in ax.get_xticklabels()] # countries = df[&#39;Country Name&#39;].unique() also works
  20. # iterate through the axes bar containers
  21. for c in ax.containers:
  22. # get the label of the current containers
  23. label = c.get_label()
  24. # use the height of the bar, country, and label name to get the corresponding percent for the container
  25. labels = [df.loc[df[&#39;Indicator Name&#39;].eq(label) &amp;
  26. df[&#39;Country Name&#39;].eq(country) &amp;
  27. df[&#39;Valeur&#39;].eq(h) , &#39;percents&#39;].iloc[0] if (h := v.get_height()) else &#39;&#39; for (v, country) in zip(c, countries)]
  28. # add the bar label with the custom labels
  29. ax.bar_label(c, labels=labels)

如何在分组的柱形图上显示自定义数值?

df

  1. Country Name Indicator Name Valeur percents
  2. 0 United States Population, total 320896618.0 100%
  3. 1 United States Population, ages 0-14, total 61653419.0 19%
  4. 2 United States Population, ages 15-64, total 212262832.0 66%
  5. 3 United States Population, ages 65+, total 46980367.0 15%
  6. 4 Russian Federation Population, total 144096870.0 100%
  7. 5 Russian Federation Population, ages 0-14, total 24255306.0 17%
  8. 6 Russian Federation Population, ages 15-64, total 100404879.0 70%
  9. 7 Russian Federation Population, ages 65+, total 19436685.0 13%
  10. 8 Japan Population, total 127141000.0 100%
  11. 9 Japan Population, ages 0-14, total 16517168.0 13%
  12. 10 Japan Population, ages 15-64, total 77547638.0 61%
  13. 11 Japan Population, ages 65+, total 33076194.0 26%
  14. 12 Germany Population, total 81686611.0 100%
  15. 13 Germany Population, ages 0-14, total 10716271.0 13%
  16. 14 Germany Population, ages 15-64, total 53720119.0 66%
  17. 15 Germany Population, ages 65+, total 17250221.0 21%
  18. 16 France Population, total 66624068.0 100%
  19. 17 France Population, ages 0-14, total 12168975.0 18%
  20. 18 France Population, ages 15-64, total 41837530.0 63%
  21. 19 France Population, ages 65+, total 12617563.0 19%

huangapple
  • 本文由 发表于 2023年3月15日 19:01:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/75743826.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定