根据其他列中的True/False 如何创建新列?

huangapple go评论100阅读模式
英文:

How to create new column based on true/false in other columns?

问题

我有多个包含“TRUE”和“FALSE”语句的列,我想创建一个新列,其中包含真实列的列名,它应该看起来像示例中的样子。

新列应该是“color”。

           color   red yellow orange  blue
1           blue FALSE  FALSE  FALSE  TRUE
2      red, blue  TRUE  FALSE  FALSE  TRUE
3    blue, green FALSE  FALSE  FALSE  TRUE
4         purple FALSE  FALSE  FALSE FALSE
5 yellow, orange FALSE   TRUE   TRUE FALSE

我尝试使用case_when函数,但要考虑的排列组合太多。

英文:

I have multiple columns that contain TRUE and FALSE statements and I want to create a new column that contains the col name of the true columns it should look like the example.

the color needs to be the new column.

           color   red yellow orange  blue
1           blue FALSE  FALSE  FALSE  TRUE
2      red, blue  TRUE  FALSE  FALSE  TRUE
3    blue, green FALSE  FALSE  FALSE  TRUE
4         purple FALSE  FALSE  FALSE FALSE
5 yellow, orange FALSE   TRUE   TRUE FALSE

I have tried to use case_when function but it is to many permutations to use.

答案1

得分: 2

你可以在applycbind中对names进行子集化。

cbind(dat, clr = apply(dat[-1], 1, \(x) if (any(x)) toString(names(dat)[-1][x]) else NA))
#            color   red yellow orange  blue            clr
# 1           blue FALSE  FALSE  FALSE  TRUE           blue
# 2      red, blue  TRUE  FALSE  FALSE  TRUE      red, blue
# 3    blue, green FALSE  FALSE  FALSE  TRUE           blue
# 4         purple FALSE  FALSE  FALSE FALSE           <NA>
# 5 yellow, orange FALSE   TRUE   TRUE FALSE yellow, orange

数据:

dat <- structure(list(color = c("blue", "red, blue", "blue, green", 
"purple", "yellow, orange"), red = c(FALSE, TRUE, FALSE, FALSE, 
FALSE), yellow = c(FALSE, FALSE, FALSE, FALSE, TRUE), orange = c(FALSE, 
FALSE, FALSE, FALSE, TRUE), blue = c(TRUE, TRUE, TRUE, FALSE, 
FALSE)), class = "data.frame", row.names = c(NA, -5L))
英文:

You could subset the names in an apply and cbind.

cbind(dat, clr=apply(dat[-1], 1, \(x) if (any(x)) toString(names(dat)[-1][x]) else NA))
#            color   red yellow orange  blue            clr
# 1           blue FALSE  FALSE  FALSE  TRUE           blue
# 2      red, blue  TRUE  FALSE  FALSE  TRUE      red, blue
# 3    blue, green FALSE  FALSE  FALSE  TRUE           blue
# 4         purple FALSE  FALSE  FALSE FALSE           &lt;NA&gt;
# 5 yellow, orange FALSE   TRUE   TRUE FALSE yellow, orange

Data:

dat &lt;- structure(list(color = c(&quot;blue&quot;, &quot;red, blue&quot;, &quot;blue, green&quot;, 
&quot;purple&quot;, &quot;yellow, orange&quot;), red = c(FALSE, TRUE, FALSE, FALSE, 
FALSE), yellow = c(FALSE, FALSE, FALSE, FALSE, TRUE), orange = c(FALSE, 
FALSE, FALSE, FALSE, TRUE), blue = c(TRUE, TRUE, TRUE, FALSE, 
FALSE)), class = &quot;data.frame&quot;, row.names = c(NA, -5L))

答案2

得分: 0

以下是翻译后的代码部分:

# 使用tidyverse,创建一个单独的列(可能有几种方法可以实现):

# 准备数据以添加id列
df <- df %>%
  mutate(id = row_number())

# 计算具有颜色的新列
df_new_col <- df %>%
  pivot_longer(!id, names_to = "color", values_to "presence") %>%
  filter(presence) %>%
  group_by(id) %>%
  summarise(
    Color = paste0(color, collapse = ", ")
  )

# 添加新列并移除临时的id
df <- df %>%
  left_join(df_new_col, by = "id") %>%
  select(-id)

希望这有所帮助。

英文:

I would use the tidyverse, and create the column in a separate way before (there is probably several ways to do this):

# Prepare the data to add the id column
df &lt;- df %&gt;% 
  mutate(id = row_number())

# Compute the new column with the colors
df_new_col &lt;- df %&gt;% 
  pivot_longer(!id, names_to = &quot;color&quot;, values_to = &quot;presence&quot;) %&gt;% 
  filter(presence) %&gt;% 
  group_by(id) %&gt;% 
  summarise(
    Color = paste0(color, collapse = &quot;, &quot;)
  )

# Add the new column, and remove the temporary id
df &lt;- df %&gt;% 
  left_join(df_new_col, by = &quot;id&quot;) %&gt;% 
  select(-id)

I do it like that in case there is some lines with all FALSE.

答案3

得分: 0

另一种使用dplyr的方法:

library(dplyr)

df %>%
  rowwise() %>%
  mutate(color = toString(names(.)[c_across(everything())])) %>%
  ungroup()

输出:

# A tibble: 5 × 5
  red   yellow orange blue  color           
  <lgl> <lgl>  <lgl>  <lgl> <chr>           
1 FALSE FALSE  FALSE  TRUE  "blue"          
2 TRUE  FALSE  FALSE  TRUE  "red, blue"     
3 FALSE FALSE  FALSE  TRUE  "blue"          
4 FALSE FALSE  FALSE  FALSE ""              
5 FALSE TRUE   TRUE   FALSE "yellow, orange"
英文:

Another dplyr way:

library(dplyr)

df %&gt;%
  rowwise %&gt;%
  mutate(color = toString(names(.)[c_across(everything())])) %&gt;%
  ungroup

Output:

# A tibble: 5 &#215; 5
  red   yellow orange blue  color           
  &lt;lgl&gt; &lt;lgl&gt;  &lt;lgl&gt;  &lt;lgl&gt; &lt;chr&gt;           
1 FALSE FALSE  FALSE  TRUE  &quot;blue&quot;          
2 TRUE  FALSE  FALSE  TRUE  &quot;red, blue&quot;     
3 FALSE FALSE  FALSE  TRUE  &quot;blue&quot;          
4 FALSE FALSE  FALSE  FALSE &quot;&quot;              
5 FALSE TRUE   TRUE   FALSE &quot;yellow, orange&quot;

答案4

得分: 0

我们可以使用 tidyverse,如下所示:

library(dplyr)
library(tidyr)
 df1 %>%
  mutate(across(red:blue, ~ case_when(.x ~ cur_column()))) %>%
  unite(color, red:blue, na.rm = TRUE, sep = ", ", remove = FALSE)

输出:

           color  red yellow orange blue
1           blue <NA>   <NA>   <NA> blue
2      red, blue  red   <NA>   <NA> blue
3           blue <NA>   <NA>   <NA> blue
4              <NA>   <NA>   <NA>   <NA>
5 yellow, orange <NA> yellow orange <NA>
英文:

We could use tidyverse as

library(dplyr)
library(tidyr)
 df1 %&gt;% 
  mutate(across(red:blue, ~ case_when(.x ~ cur_column()))) %&gt;%
  unite(color, red:blue, na.rm = TRUE, sep = &quot;, &quot;, remove = FALSE)

-output

           color  red yellow orange blue
1           blue &lt;NA&gt;   &lt;NA&gt;   &lt;NA&gt; blue
2      red, blue  red   &lt;NA&gt;   &lt;NA&gt; blue
3           blue &lt;NA&gt;   &lt;NA&gt;   &lt;NA&gt; blue
4                &lt;NA&gt;   &lt;NA&gt;   &lt;NA&gt; &lt;NA&gt;
5 yellow, orange &lt;NA&gt; yellow orange &lt;NA&gt;

</details>



huangapple
  • 本文由 发表于 2023年3月12日 19:09:56
  • 转载请务必保留本文链接:https://go.coder-hub.com/75712703.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定