Seq2Seq上下文向量是如何生成的?

huangapple go评论51阅读模式
英文:

How Seq2Seq Context Vector is generated?

问题

我已经研究了seq2seq模型的理论,但我无法清楚地理解上下文向量究竟是什么,以及它是如何生成的。我知道它总结了要被编码的序列的含义,但具体是如何实现的呢?

在注意力机制中,上下文向量的计算是:ci = Σ( αij hj ) [根据Dzmitry Bahdanau于2014年提出]

但在普通的seq2seq模型中,我无法找到Ilya Sutskever于2014年或互联网上的上下文向量的公式。唯一提供的公式是条件概率的形式 (y1,y2,...,yt|x1,x2,..,xt)。

我也感到困惑,传统的seq2seq模型中的上下文向量是否与平均word2vec相同?

简而言之,我期望清楚地了解上下文向量是如何创建的,它代表什么以及如何实现的。此外,解码器是如何从中提取信息的。

我期望清楚地了解上下文向量是如何创建的,它代表什么以及如何实现的。此外,解码器是如何从中提取信息的。

英文:

I have studied the theory of seq2seq model but I couldn't clearly understand that what exactly is context vector and how is it generated. I know it summarizes the meaning of to-be-encoded sequence into it but how exactly?

In attention mechanism it was ; ci = Σ( αij hj ) [according to Dzmitry Bahdanau 2014]

But in normal seq2seq, I couldn't find a formula for context vector in Ilya Sutskever 2014 and on internet, There is only given formula of conditional probability as (y1,y2,...,yt|x1,x2,..,xt).

I am also confused that is classic seq2seq context vector of a sentence is same as average word2vec?

In Short, I am expecting a clear working of how context vector is created and what does it presents and how. Furthermore, how decoder extracts information from it.

I am expecting a clear working of how context vector is created and what does it presents and how. Furthermore, how decoder extracts information from it.

答案1

得分: 1

在序列到序列(seq2seq)模型中,上下文向量是由编码器生成的输入序列的表示,由解码器用于生成输出序列。编码器生成一组隐藏状态,捕获了输入序列在那个时间点之前的相关信息。上下文向量然后通过某种方式组合这些隐藏状态来生成。在注意机制中,上下文向量是隐藏状态的加权和,而在没有注意机制的基本seq2seq模型中,上下文向量通常是由编码器生成的最终隐藏状态。在解码过程中,上下文向量被解码器用于生成输出序列的每个元素。上下文向量与输入序列中单词嵌入的平均值不同,它是一个与任务和模型架构相关的学习表示。您提供的公式,ci = Σ( αij hj ),是使用注意机制计算上下文向量的标准公式。

在没有注意机制的基本seq2seq模型中,上下文向量通常是由编码器生成的最终隐藏状态。然后,这个隐藏状态用作解码器的初始隐藏状态,解码器逐步生成输出序列。

在解码过程中,解码器使用上下文向量生成输出序列的每个元素。在每个时间步,解码器接受前一个输出元素和当前隐藏状态,并生成新的隐藏状态和输出元素。

举个例子,假设我们有一个阿拉伯语句子,我们想将其翻译成英语句子。以下是发生的情况,我们通过将阿拉伯语作为输入序列和阿拉伯语作为输出序列进行训练来完成这个任务。现在模型由主要组件组成:编码器和解码器。编码器将英语句子作为输入,并生成一个固定长度的上下文向量,总结了输入序列。然后解码器接受上下文向量并逐词生成相应的英语翻译。

英文:

In a sequence-to-sequence (seq2seq) model, the context vector is a representation of the input sequence generated by the encoder and used by the decoder to generate the output sequence. The encoder produces a set of hidden states that capture relevant information about the input sequence up to that point in time. The context vector is then generated by combining these hidden states in some way. In the attention mechanism, the context vector is a weighted sum of the hidden states, while in a basic seq2seq model without attention, the context vector is typically the final hidden state produced by the encoder. During decoding, the context vector is used by the decoder to generate each element of the output sequence. The context vector is not the same as the average of the word embeddings in the input sequence and is a learned representation that is specific to the task at hand and model architecture. The formula you provided, ci = Σ( αij hj ), is the standard formula for computing the context vector using the attention mechanism.

In a basic seq2seq model without attention, the context vector is typically the final hidden state produced by the encoder. This hidden state is then used as the initial hidden state for the decoder, which generates the output sequence one step at a time.

During decoding, the context vector is used by the decoder to generate each element of the output sequence. At each time step, the decoder takes in the previous output element and the current hidden state and produces a new hidden state and output element

As an example let's say we have Arabic sentence and we want to translate it to English sentence. Here is what happens, we accomplish this task by training arabic as input sequence and Arabic as output sequence. Now the model consists of main components: an encoder and a decoder. The encoder takes in the English sentence as input and produces a fixed-length context vector that summarizes the input sequence. The decoder then takes in the context vector and generates the corresponding English translation one word at a time.

Andrew ng videos on youtube provide perfect explanation I myself learned it from him: https://www.youtube.com/watch?v=IV8--Y3evjw&list=PLiWO7LJsDCHcpUmL9grX9WLjyi-e92iCO

huangapple
  • 本文由 发表于 2023年2月23日 21:40:21
  • 转载请务必保留本文链接:https://go.coder-hub.com/75545619.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定