Perceptron算法使用matplotlib绘图。

huangapple go评论85阅读模式
英文:

Perceptron Algorithm plotting with matplotlib

问题

以下是您要求的翻译部分:

在一个机器学习课程中,我有100个数据点,并且正在使用感知机算法。我想要展示一个像这样的图表。

Perceptron算法使用matplotlib绘图。

如您所见,上面的图中,我们有用红色和蓝色点表示的数据,以及最小化误差的不同计算线。这就是我想要的输出。这是我的数据和我的代码。

data.csv

您提供的数据文件内容

现在这是我的代码。第一部分

您提供的代码部分

当您运行这段代码时,您可以正确获得以下图像:

Perceptron算法使用matplotlib绘图。

所以现在我想在同一图中绘制代表每次迭代的最佳函数的线条。为此,我在上面的plt.show()后面添加了注释,并执行了以下操作:

您提供的代码部分

但是这没有得到我预期的结果。为什么这不会得到预期的结果?

希望这能帮助您解决问题。如果您需要更多帮助,请告诉我。

英文:

In an ML course, I m taking, I have 100 entries of data, and I'm using it in a Perceptron Algorithm.
What I want is to show a plot like this one.

Perceptron算法使用matplotlib绘图。

As you can see above we have the data represented by point in red and blue and the different calculated lines that minimize the error. This is the output that I want.. Here is my Data and my code.

data.csv

0.78051,-0.063669,1
0.28774,0.29139,1
0.40714,0.17878,1
0.2923,0.4217,1
0.50922,0.35256,1
0.27785,0.10802,1
0.27527,0.33223,1
0.43999,0.31245,1
0.33557,0.42984,1
0.23448,0.24986,1
0.0084492,0.13658,1
0.12419,0.33595,1
0.25644,0.42624,1
0.4591,0.40426,1
0.44547,0.45117,1
0.42218,0.20118,1
0.49563,0.21445,1
0.30848,0.24306,1
0.39707,0.44438,1
0.32945,0.39217,1
0.40739,0.40271,1
0.3106,0.50702,1
0.49638,0.45384,1
0.10073,0.32053,1
0.69907,0.37307,1
0.29767,0.69648,1
0.15099,0.57341,1
0.16427,0.27759,1
0.33259,0.055964,1
0.53741,0.28637,1
0.19503,0.36879,1
0.40278,0.035148,1
0.21296,0.55169,1
0.48447,0.56991,1
0.25476,0.34596,1
0.21726,0.28641,1
0.67078,0.46538,1
0.3815,0.4622,1
0.53838,0.32774,1
0.4849,0.26071,1
0.37095,0.38809,1
0.54527,0.63911,1
0.32149,0.12007,1
0.42216,0.61666,1
0.10194,0.060408,1
0.15254,0.2168,1
0.45558,0.43769,1
0.28488,0.52142,1
0.27633,0.21264,1
0.39748,0.31902,1
0.5533,1,0
0.44274,0.59205,0
0.85176,0.6612,0
0.60436,0.86605,0
0.68243,0.48301,0
1,0.76815,0
0.72989,0.8107,0
0.67377,0.77975,0
0.78761,0.58177,0
0.71442,0.7668,0
0.49379,0.54226,0
0.78974,0.74233,0
0.67905,0.60921,0
0.6642,0.72519,0
0.79396,0.56789,0
0.70758,0.76022,0
0.59421,0.61857,0
0.49364,0.56224,0
0.77707,0.35025,0
0.79785,0.76921,0
0.70876,0.96764,0
0.69176,0.60865,0
0.66408,0.92075,0
0.65973,0.66666,0
0.64574,0.56845,0
0.89639,0.7085,0
0.85476,0.63167,0
0.62091,0.80424,0
0.79057,0.56108,0
0.58935,0.71582,0
0.56846,0.7406,0
0.65912,0.71548,0
0.70938,0.74041,0
0.59154,0.62927,0
0.45829,0.4641,0
0.79982,0.74847,0
0.60974,0.54757,0
0.68127,0.86985,0
0.76694,0.64736,0
0.69048,0.83058,0
0.68122,0.96541,0
0.73229,0.64245,0
0.76145,0.60138,0
0.58985,0.86955,0
0.73145,0.74516,0
0.77029,0.7014,0
0.73156,0.71782,0
0.44556,0.57991,0
0.85275,0.85987,0
0.51912,0.62359,0

And now this is my code. The first part

import numpy as np
import pandas as pd
# Setting the random seed, feel free to change it and see different solutions.
np.random.seed(42)
import matplotlib.pyplot as plt


def stepFunction(t):
    return 1 if t >= 0 else 0


def prediction(X, W, b):
    return stepFunction((np.matmul(X, W) + b)[0])

# TODO: Fill in the code below to implement the perceptron trick.
# INPUTS
# data X, the labels y,
# the weights W (as an array), and the bias b,
# The function  weights and bias W, b, according to the perceptron algorithm,
# and return W and b.

def perceptronStep(X, y, W, b, learn_rate=0.01):
    for i in range(len(X)):
        y_hat = prediction(X[i], W, b)
        if y[i] - y_hat == 1:
            W[0] += X[i][0] * learn_rate
            W[1] += X[i][1] * learn_rate
            b += learn_rate
        elif y[i] - y_hat == -1:
            W[0] -= X[i][0] * learn_rate
            W[1] -= X[i][1] * learn_rate
            b -= learn_rate
    return W, b

# This function runs the perceptron algorithm repeatedly on the dataset,
# and returns a few of the boundary lines obtained in the iterations,
# for plotting purposes.
# Feel free to play with the learning rate and the num_epochs,
# and see your results plotted below.
def trainPerceptronAlgorithm(X, y, learn_rate=0.01, num_epochs=25):
    x_min, x_max = min(X.T[0]), max(X.T[0])
    y_min, y_max = min(X.T[1]), max(X.T[1])
    W = np.array(np.random.rand(2, 1))
    b = np.random.rand(1)[0] + x_max
    # These are the solution lines that get plotted below.
    boundary_lines = []
    for i in range(num_epochs):
        # In each epoch, we apply the perceptron step.
        W, b = perceptronStep(X, y, W, b, learn_rate)
        # Here I have a doubt . Why if y = W0*x1 + W1*x2 + b
        # So we can get  x2 =y/W1 -(W0*x1)/W1 -b/W1 + y/W1)
        # If we remove y/W1 we just get intercept and slope
        # But why we are not using the last term y/W1
        boundary_lines.append((-W[0] / W[1], -b / W[1]))
    return boundary_lines

# Get data and plot the points
data = pd.read_csv('data.csv', header = None)
X = data.iloc[:, :2].values
y = data.iloc[:, -1].values

x1 = X[:, 0]
x2 = X[:, 1]
color = ['red' if value == 1 else 'blue' for value in y]
plt.scatter(x1, x2, marker='o', color=color)
plt.xlabel('X1 input feature')
plt.ylabel('X2 input feature')
plt.title('Perceptron regression for X1, X2')
plt.show()

When you run this code you correctly get

Perceptron算法使用matplotlib绘图。

So now I want to plot the line in the same plot the lines that represent the best function for each iteration.For that, I commented the last line above plt.show() and did

# So now lets plot the lines that represent the best function for each iteration
boundary_lines = trainPerceptronAlgorithm(X, y)
x_lin = np.linspace(0, 1, 100)
for line in boundary_lines:
    Θo, Θ1  = line
    Θ1 = Θ1[0]
    Θo = Θo[0]
    # TODO: The equation of the error function is
    # y = W0*x1 + W1*x2 + b
    # So we can get  x2 =y/W1 -(W0*x1)/W1 -b/W1 + y/W1)
    # If we remove y/W1 we just get intercept and slope
    # boundary_lines.append((-W[0] / W[1], -b / W[1])
    # plt.axes([-0.5, -0.5, 1.5, 1.5])
    plt.plot(x_lin, (Θ1 * x_lin / Θo))
    plt.draw()
    plt.pause(5)
    input("Press enter to continue")
    plt.close()

But that does not get me the expected result.
Why doesn't this get the expected result?

答案1

得分: 7

The mistake is in plt.plot(x_lin, (Θ1 * x_lin / Θo)) where instead of Θ1 * x_lin / Θo you should have Θo * x_lin + Θ1.

英文:

The mistake is in plt.plot(x_lin, (Θ1 * x_lin / Θo)) where instead of Θ1 * x_lin / Θo you should have Θo * x_lin + Θ1.

fig, ax = plt.subplots(1, 1, figsize=(8,5))
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.scatter(x1, x2, marker='o', color=color)
for i, line in enumerate(boundary_lines):
Θo, Θ1  = line
if i == len(boundary_lines) - 1:
c, ls, lw = 'k', '-', 2
else:
c, ls, lw = 'g', '--', 1.5
ax.plot(x_lin, Θo * x_lin + Θ1, c=c, ls=ls, lw=lw)
plt.show()

Result:

Perceptron算法使用matplotlib绘图。

huangapple
  • 本文由 发表于 2020年1月4日 00:06:22
  • 转载请务必保留本文链接:https://go.coder-hub.com/59581706.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定