使用CrossEntropyLoss损失函数的模型不应用softmax(在PyTorch中)。

huangapple go评论69阅读模式
英文:

model with CrossEntropyLoss criterion doesnt apply softmax pytorch

问题

我正在开发一个模型,使用nn.CrossEntropyLoss()作为我的损失函数。我遇到的问题是,模型输出一个大小为(batchsize, #classes)的向量,而实际上应该输出一个大小为(batchsize)的向量。

难道CrossEntropyLoss不应该应用LogSoftmax吗?

这是我的数据集类DatasetPlus

class DatasetPlus(Dataset):
    def __init__(self, root_img, root_data, width, height, transform=None):
        # 初始化函数的内容...
        
    def __len__(self):
        return self.len

    def __getitem__(self, idx):
        # 获取数据的内容...

这是我的模型类Net

class Net(nn.Module):
    def __init__(self, h, w):
        # 模型初始化函数的内容...
        
    def forward(self, x):
        # 模型前向传播的内容...

这是我的训练代码:

model = Net(224, 224)

trainloader = DataLoader(ds, batch_size=4, shuffle=True)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=1e-4)

def train_model(epochs):
    for epoch in range(epochs):
        losses = 0.0
        for i, data in enumerate(trainloader, 0):
            optimizer.zero_grad()
            img, label = data
            yhat = model(img)
            loss = criterion(yhat, label)
            loss.backward()
            optimizer.step()
            losses += loss.item()
            # 如果需要,可以打印损失...
train_model(5)

你已经描述了问题,但这是你遇到的错误:

ValueError: Target size (torch.Size([4])) must be the same as input size (torch.Size([4, 3]))

最后,这是导致错误的输出和标签:

yhat=
tensor([[ 0.0097,  0.0184, -0.1236],
        [ 0.0020,  0.0135, -0.1324],
        [ 0.0095,  0.0136, -0.1261],
        [ 0.0027,  0.0176, -0.1285]], grad_fn=<AddmmBackward0>)
torch.Size([4, 3])

label=
tensor([2., 1., 0., 2.])
torch.Size([4])

如果需要更多帮助,请提出具体的问题。

英文:

I am using nn.CrossEntropyLoss() in as my criterion in a model that I am developing. The problem that I am having is that the model outputs a vector of size (batchsize, #classes) when it is supposed to output a (batchsize) vector.

Isn't CrossEntropyLoss supposed to apply LogSoftmax?

Here's my Dataset:

class DatasetPlus(Dataset):
    def __init__(self, root_img, root_data, width, hight, transform=None):
        self.root_img = root_img
        self.root_data = root_data
        self.width = width
        self.hight = hight
        self.transform = transform
        # labels are stored in a csv file
        self.labels = pd.read_csv(self.root_data)
        self.imgs = [image for image in sorted(
            os.listdir(self.root_img)) if image[-4:] == &#39;.jpg&#39;]
        self.len = len(self.imgs)

    def __len__(self):
        return self.len

    def __getitem__(self, idx):
        img_name = self.imgs[idx]
        img_path = os.path.join(self.root_img, img_name)
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
        img = cv2.resize(img, (self.width, self.hight), cv2.INTER_AREA)
        img = np.array(img) / 255.0

        if self.transform is not None:
            img = self.transform(img)

        img_id = int(img_name[6:-4])
        label = self.labels.where(self.labels[&#39;ID&#39;] == img_id)[&#39;Label&#39;].dropna().to_numpy()[0]

        label = torch.tensor(label, dtype=torch.float32)

        return img, label

Here is my model:

class Net(nn.Module):
    def __init__(self, h, w):
        super().__init__()
        nw = (((w - 4) // 2) -4) // 2
        nh = (((h - 4) // 2) -4) // 2
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * nh * nw, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 3)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = (self.fc3(x))
        return x

Here's my training code:

model = Net(224, 224)

trainloader = DataLoader(ds, batch_size=4, shuffle=True)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=1e-4)

def train_model(epochs):
    for epoch in range(epochs): 
        losses = 0.0 
        for i, data in enumerate(trainloader, 0):
            optimizer.zero_grad()
            img, label = data
            yhat = model(img)
            loss = criterion(yhat, label)
            loss.backward()
            optimizer.step()
            losses += loss.item()
            # if i % 5 == 99:
            print(f&#39;[{epoch + 1}, {i + 1:5d}] loss: {losses:.3f}&#39;)
            losses = 0.0

train_model(5)

I have explained the problem but here's the error anyways:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[9], line 1
----&gt; 1 train_model(5)

Cell In[8], line 13, in train_model(epochs)
     11 print(yhat.size())
     12 print(label.size())
---&gt; 13 loss = criterion(yhat, label)
     14 loss.backward()
     15 optimizer.step()

File c:\Users\Yasamin\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py:1194, in Module._call_impl(self, *input, **kwargs)
   1190 # If we don&#39;t have any hooks, we want to skip the rest of the logic in
   1191 # this function, and just call forward.
   1192 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1193         or _global_forward_hooks or _global_forward_pre_hooks):
-&gt; 1194     return forward_call(*input, **kwargs)
   1195 # Do not call functions when jit is used
   1196 full_backward_hooks, non_full_backward_hooks = [], []

File c:\Users\Yasamin\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\loss.py:720, in BCEWithLogitsLoss.forward(self, input, target)
    719 def forward(self, input: Tensor, target: Tensor) -&gt; Tensor:
--&gt; 720     return F.binary_cross_entropy_with_logits(input, target,
    721                                               self.weight,
    722                                               pos_weight=self.pos_weight,
    723                                               reduction=self.reduction)

File c:\Users\Yasamin\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\functional.py:3160, in binary_cross_entropy_with_logits(input, target, weight, size_average, reduce, reduction, pos_weight)
   3157     reduction_enum = _Reduction.get_enum(reduction)
   3159 if not (target.size() == input.size()):
-&gt; 3160     raise ValueError(&quot;Target size ({}) must be the same as input size ({})&quot;.format(target.size(), input.size()))
   3162 return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)

ValueError: Target size (torch.Size([4])) must be the same as input size (torch.Size([4, 3]))

And finally, these are the outputs and the labels that raise this error:

yhat=
tensor([[ 0.0097,  0.0184, -0.1236],
        [ 0.0020,  0.0135, -0.1324],
        [ 0.0095,  0.0136, -0.1261],
        [ 0.0027,  0.0176, -0.1285]], grad_fn=&lt;AddmmBackward0&gt;)
torch.Size([4, 3])

label=
tensor([2., 1., 0., 2.])
torch.Size([4])

答案1

得分: 1

从我找到的信息来看,CrossEntropyLoss 有两种工作方式。

如果你传递给它 Long 类型的标签,它将将标签视为整数类别标签,形状应为 (batchsize)

但如果你传递给 CrossEntropyLoss 类型为 Float 的标签(就像我在我的代码中所做的那样),CrossEntropyLoss 将会将你的标签视为概率(“soft”)标签,并期望标签具有形状 (nBatch, #classes),也就是与 yhat 具有相同的形状。

因此,要修复这个错误,label 应该在传递给 CrossEntropyLoss 之前转换为 Long(或者在创建张量时将其设置为 int64)。

另外值得注意的是,CrossEntropyLoss 正确运行时,标签应该从零到 #classes - 1

英文:

from what I found out, CrossEntropyLoss works in two ways.

If you pass it Long labels, it treats the labels as integer class labels and the shape of (batchsize) is correct.

But if you pass CrossEntropyLoss labels of type Float (as I have in my code) CrossEntropyLoss therefore treats your labels as probabilistic (“soft”) labels and expects labels to have shape (nBatch, #classes), that is, to have the same shape
as yhat.

So to fix the error, label should be converted to Long, before
being passed to CrossEntropyLoss (or set it to int64 when creating the tensor)

Also it is worth noting that labels should be from zero to )#classes -1) for CrossEntropyLoss to operate correctly.

huangapple
  • 本文由 发表于 2023年2月18日 14:32:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/75491617.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定