Marginaleffects – obtaining contrasts and plotting predictions

huangapple go评论88阅读模式
英文:

Marginaleffects - obtaining contrasts and plotting predictions

问题

  1. 使用marginaleffects,我试图获取关于"period"的对比。
  2. 尝试通过"period"来可视化预测。
  3. 尝试通过"session"来可视化预测。

但在所有这些尝试中都遇到了问题。任何帮助将不胜感激。

在错误消息中提到:

错误:无法使用这个模型计算预测值。您可以尝试向newdata参数提供不同的数据集。如果这不起作用,您可以在GitHub的问题跟踪器上提交报告:https://github.com/vincentarelbundock/marginaleffects/issues

错误:无法使用这个模型计算预测值。您可以尝试向newdata参数提供不同的数据集。如果这不起作用,您可以在GitHub的问题跟踪器上提交报告:https://github.com/vincentarelbundock/marginaleffects/issues

此外,还出现了以下错误:无效的分组因子规范,id2。此外,警告消息提示:一些变量名称在模型数据中缺失:include_random。

df数据如下:(以下为数据示例)

英文:

Using marginaleffects, I was trying to

  1. obtain contrasts by "period"
  2. visualize the predictions by "period"
  3. visualize the predictions by "session"

And failed in all! Any help is appreciated.

Df in the end

  1. library(lme4)
  2. library(lmerTest)
  3. library(marginaleffects)
  4. library(dplyr)
  5. import dat_long
  6. dat_long$group <- as.factor(dat_long$group)
  7. dat_long$period <- as.factor(dat_long$period)
  8. dat_long <- dat_long %>%
  9. mutate(group2 = group)
  10. m222 <- lmer(money ~ session + period + group2 + (1 | id2) + (1 | session / date / period), data = dat_long )
  11. summary(m222)
  12. contrasts_periods <- comparisons(
  13. m222,
  14. variables = "period",
  15. include_random = FALSE,
  16. newdata = datagrid(
  17. period = c("p1", "p2", "p3", "p4")
  18. )
  19. )
  20. #2
  21. pred_period <- predictions( m222,
  22. newdata = datagrid(id2 = NA,
  23. period = c("p1", "p2", "p3", "p4"),
  24. include_random = FALSE))
  25. ggplot(pred, aes(x = period, y = predicted,
  26. ymin = conf.low, ymax = conf.high))
  27. #3
  28. pred_session <- predictions( m222,
  29. newdata = datagrid(id2 = NA,
  30. session = seq(from = 16, to = 38, by = 1),
  31. include_random = FALSE))

error codes:

> Error: Unable to compute predicted values with this model. You can
> try to supply a different dataset to the newdata argument. If this
> does not work, you can file a report on the Github Issue Tracker:
> https://github.com/vincentarelbundock/marginaleffects/issues

> Error: Unable to compute predicted values with this model. You can try
> to supply a different dataset to the newdata argument. If this does
> not work, you can file a report on the Github Issue Tracker:
> https://github.com/vincentarelbundock/marginaleffects/issues
>
> This error was also raised: Invalid grouping factor specification,
> id2 In addition: Warning message: Some of the variable names are
> missing from the model data: include_random

df below:

  1. dat_long <- structure(list(money = c(22625, 23349, 18189, 16302, 12874, 17343,
  2. 15912, 15300, 18762, 23506, 18290, 10296, 13172, 15288, 12462,
  3. 16380, 14352, 15052, 14497, 16241, 14832, 14304, 15120, 3745,
  4. 15012, 13916, 13056, 12432, 12441, 15762, 10660, 18150, 15496,
  5. 16905, 14872, 16166, 15892, 18755, 16241, 16874, 15836, 15225,
  6. 32190, 30450, 25200, 19840, 31800, 29892, 10416, 26520, 29029,
  7. 28623, 26544, 16988, 22801, 19317, 30694, 20447, 26030, 22378,
  8. 27267, 21760, 26334, 26896, 32085, 28914, 26892, 18683, 19468,
  9. 16920, 17640, 20829, 17920, 17424, 20538, 21760, 14985, 13407,
  10. 13624, 15470, 21252, 15129, 21336, 17760, 22908, 16940, 15860,
  11. 17732, 18048, 16002, 18480, 20328, 22848, 19630, 17030, 24220,
  12. 16074, 20234, 20413, 20448, 23715, 22010, 24000, 25245, 23088,
  13. 16445, 22200, 24786, 20100, 17766, 20022, 22194, 16284, 23560,
  14. 16638, 23345, 26788, 21462, 16786, 16362, 22176, 21600, 21744,
  15. 21432, 19026, 22330, 20049, 19968, 18876, 20850, 19126, 18788,
  16. 19650, 24320, 17100, 22785, 18875, 23520, 21252, 17766, 20304,
  17. 19170, 17780, 19296, 15855, 16244, 19875, 18476, 16284, 17780,
  18. 14279, 20562, 17556, 17568, 20700, 19750, 22401, 19625, 20264,
  19. 18176, 19272, 24180, 21855, 22490, 22560, 19599, 20550, 17856,
  20. 20670, 18768, 20385, 17856, 16891, 18081, 18755, 18796, 21450,
  21. 18576, 16263, 18460, 16616, 16992, 17250, 18995, 21021, 20368,
  22. 17536, 18626, 11742, 15872, 19684, 17250, 15616, 17176, 17653,
  23. 17690, 19890, 18054, 17760, 17346, 17316, 17316, 16610, 15428,
  24. 19950, 17424, 18720, 18029, 20724, 21574, 21632, 23584, 22059,
  25. 17741, 19328, 21120, 18029, 20295, 21679, 19803, 16157, 20250,
  26. 21870, 15052, 19782, 21528, 22275, 21285, 17787, 19635, 20768,
  27. 19965, 19203, 21666, 23472, 22270, 21528, 14900, 14070, 15120,
  28. 18306, 15707, 17810, 18630, 13552, 20691, 18375, 21376, 17732,
  29. 16512, 16896, 22410, 22022, 27512, 18796, 26274, 19877, 24462,
  30. 29722, 21823, 18834, 23856, 22491, 23055, 26568, 19096, 20944,
  31. 21320, 21140, 20124, 17415, 15776, 20034, 20698, 19723, 19845,
  32. 22139, 17272, 18720, 23616, 18144, 21312, 20150, 13560, 13560,
  33. 15470, 19458, 18944, 19044, 16129, 18354, 23400, 20155, 18161,
  34. 19881, 20002, 21060, 20436, 16637, 16968, 15656, 12870, 17767,
  35. 17160, 17549, 15696, 18860, 22116, 14602, 20648, 20680, 17549,
  36. 19184, 21756, 23718, 24742, 22848, 18511, 23230, 22987, 25480,
  37. 26064, 18300, 18161, 18300, 17628, 18720, 24072, 23760, 21672,
  38. 20060, 20280, 20482, 18620, 20160, 16764, 15990, 19328, 18125,
  39. 18864, 12870, 13899, 16254, 16891, 14742, 16482, 16520, 14278,
  40. 16074, 16610, 14848, 16002, 16675, 18850, 14964, 15738, 13254,
  41. 18720, 17135, 21352, 17040, 14784, 20592, 19044, 20770, 18560,
  42. 13800, 12996, 16256, 18476, 20572, 20445, 16576, 14319, 17408,
  43. 16128, 16124, 16065, 14756, 12432, 15029, 21352, 17810, 19932,
  44. 18495, 14720, 22914, 17063, 15645, 20735, 22960, 22925, 19845,
  45. 15708, 21942, 27531, 20850, 22475, 22484, 22140, 15260, 21106,
  46. 19817, 15360, 18480, 14586, 20433, 20838, 23881, 21679, 17612,
  47. 19952, 17856, 23560, 19311, 19728, 18850, 18560, 20139, 15840,
  48. 14824, 11210, 19728, 14784, 15065, 22638, 18216, 26219, 22797,
  49. 37047, 20687, 22176, 19519, 18492, 13516, 18327, 15616, 16616,
  50. 24928, 19840, 20838, 18460, 19176, 17825, 16950, 16786, 23254,
  51. 20655, 19352, 22632, 19684, 15312, 16770, 17010, 16464, 17135,
  52. 16568, 15494, 18327, 17136, 19221, 16166, 18944, 16541, 15622,
  53. 13746, 19720, 16640, 16303, 17690, 15132, 14400, 14060, 14835,
  54. 13320, 14322, 13860, 14796, 14946, 14790, 12600, 19460, 16940,
  55. 15708, 18176, 16080, 18161, 14260, 18358, 14632, 16482, 19964,
  56. 22218, 20139, 19040, 15368, 19880, 17286, 17388, 20424, 17400,
  57. 16445, 18760, 16958, 13334, 10608, 5940, 23068, 20300, 20944,
  58. 22046, 23256, 19418, 19456, 20328, 20536, 17343, 18161, 18070,
  59. 22632, 21624, 22620, 23850, 21840, 20174, 18250, 20172, 15260,
  60. 18120, 15038, 18445, 15048, 19456, 20328, 20536, 17343, 15594,
  61. 14124, 12862, 16899, 17160, 15080, 12971, 16430, 13356, 12947,
  62. 14430, 16764, 17136, 21965, 15729, 18000, 14304, 14214, 19470,
  63. 17380, 14688, 17666, 16470, 17334, 14976, 14688, 26196, 25993,
  64. 22704, 24639, 19352, 22188, 21924, 18271, 20240, 14874, 16320,
  65. 13923, 26989, 24464, 24830, 20320, 21195, 20212, 17168, 18612,
  66. 19454, 15510, 25277, 19872, 21033, 20808, 20824, 23250, 16002,
  67. 18492, 18900, 20413, 17446, 20124, 24257, 19557, 23919, 25610,
  68. 17490, 16157, 17545, 18370, 21357, 23058, 21888, 18796, 22388,
  69. 18200, 19140, 21808, 19844, 19530, 21879, 22880, 19239, 22230,
  70. 23166, 18871, 17480, 17199, 16874, 24206, 13224, 16905, 11322,
  71. 17880, 19536, 13910, 15972, 17145, 16750, 16226, 15972, 14875,
  72. 15128, 14756, 15972, 14875, 15128, 14756, 17112, 21312, 19126,
  73. 17556, 20276, 17100, 18972, 15429, 17820, 17024, 16641, 17135,
  74. 16714, 17324, 14125, 13080, 13189, 16000, 15006, 16740, 16092,
  75. 17908, 14626, 14859, 15744, 15113, 17292, 13804, 14541, 15113,
  76. 17292, 13804, 14541, 22308, 20736, 17958, 14976, 15410, 14762,
  77. 14803, 18900, 17792, 19448, 16872, 17013, 14040, 14840, 16520,
  78. 14224, 17908, 13462, 16874, 16675, 14715, 16263, 16440, 14317,
  79. 17082, 13764, 17052, 18120, 17442, 12838, 2322, 14637, 14934,
  80. 20066, 19520, 17880, 19304, 16422, 17526, 21420, 16254, 18090,
  81. 14803, 14874, 16320, 13923, 19328, 20592, 17152, 21573, 19716,
  82. 19800, 17792, 16896, 15128, 16899, 16510, 16375, 15488, 16974,
  83. 15151, 17980, 15946, 20856, 21158, 17493, 19539, 19488, 21060,
  84. 19840, 18352, 16974, 20034, 18997, 16758, 16046, 20034, 18997,
  85. 16758, 16046, 18600, 19939, 18603, 15184, 20829, 19096, 19630,
  86. 15012, 21384, 16750, 18029, 15410, 18724, 14580, 13420, 17664,
  87. 16206, 1595, 16675, 17822, 16348, 19304, 17136, 17136, 15812,
  88. 12648, 20961, 18544, 11748, 14763, 16758, 16046, 11748, 14763,
  89. 11660, 17589, 19200, 19588, 20727, 10725, 13870, 17374, 12354,
  90. 16214, 22101, 21080, 21525, 20125, 19434, 19800, 20125, 19434,
  91. 19800, 21054, 19800, 24250, 20196, 21175, 24790, 18318, 24024,
  92. 25004, 20083, 18144, 23976, 26660, 18688, 23520, 20304, 19832,
  93. 19360, 18228, 18921, 20800, 21038, 19873, 22468, 17666, 13635
  94. ), session = c(34, 34, 34, 17, 17, 19, 19, 19, 21, 21, 21, 24,
  95. 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 33,
  96. 33, 33, 33, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 18, 19,
  97. 19, 19, 21, 21, 21, 23, 24, 24, 24, 24, 26, 26, 27, 27, 27, 34,
  98. 34, 34, 36, 36, 38, 38, 38, 17, 17, 17, 18, 18, 18, 21, 21, 21,
  99. 22, 22, 22, 23, 23, 23, 25, 25, 25, 25, 26, 26, 26, 27, 27, 27,
  100. 37, 37, 37, 38, 38, 38, 38, 16, 16, 16, 18, 18, 18, 19, 19, 19,
  101. 21, 21, 21, 23, 23, 23, 23, 25, 25, 26, 26, 26, 26, 32, 32, 32,
  102. 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 16,
  103. 16, 16, 17, 17, 17, 21, 21, 21, 21, 23, 23, 25, 25, 25, 26, 26,
  104. 32, 32, 32, 32, 33, 33, 33, 34, 34, 34, 34, 35, 35, 38, 38, 38,
  105. 17, 17, 17, 18, 18, 21, 21, 23, 23, 23, 23, 25, 25, 25, 26, 26,
  106. 26, 26, 32, 32, 32, 34, 34, 34, 35, 35, 35, 35, 16, 19, 19, 16,
  107. 16, 16, 17, 17, 19, 19, 21, 21, 21, 21, 22, 22, 22, 27, 27, 27,
  108. 27, 32, 32, 32, 32, 33, 33, 33, 33, 35, 35, 35, 35, 36, 36, 36,
  109. 36, 16, 16, 16, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23,
  110. 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 27, 32,
  111. 32, 33, 33, 33, 34, 34, 35, 35, 35, 19, 19, 19, 23, 23, 23, 24,
  112. 24, 24, 24, 25, 25, 25, 27, 27, 27, 27, 33, 33, 33, 37, 37, 23,
  113. 23, 23, 38, 38, 16, 16, 16, 17, 17, 17, 18, 18, 18, 21, 21, 21,
  114. 22, 22, 23, 23, 23, 24, 16, 18, 19, 19, 19, 20, 20, 20, 22, 23,
  115. 24, 16, 16, 16, 18, 18, 18, 19, 19, 19, 22, 22, 22, 23, 23, 23,
  116. 23, 24, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27,
  117. 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36,
  118. 38, 38, 38, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21, 21, 22,
  119. 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 35, 35, 35, 36, 36, 36,
  120. 36, 37, 37, 16, 17, 17, 17, 18, 18, 18, 19, 19, 21, 23, 23, 23,
  121. 25, 25, 25, 25, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35,
  122. 35, 35, 36, 36, 36, 36, 38, 38, 38, 38, 16, 16, 16, 19, 19, 19,
  123. 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 25, 25, 35,
  124. 35, 36, 36, 36, 36, 37, 37, 37, 23, 16, 16, 16, 19, 19, 19, 21,
  125. 21, 21, 21, 31, 31, 31, 32, 32, 32, 32, 34, 34, 36, 36, 36, 16,
  126. 16, 22, 22, 22, 22, 24, 24, 24, 24, 28, 28, 28, 34, 34, 34, 37,
  127. 37, 37, 16, 16, 16, 21, 21, 21, 25, 25, 25, 25, 30, 30, 30, 30,
  128. 31, 31, 31, 32, 32, 32, 36, 36, 36, 16, 16, 16, 20, 20, 34, 34,
  129. 34, 35, 35, 17, 17, 17, 18, 21, 21, 21, 23, 23, 23, 23, 26, 26,
  130. 26, 26, 27, 27, 29, 29, 29, 30, 30, 30, 30, 32, 32, 32, 33, 34,
  131. 34, 34, 35, 35, 36, 36, 36, 17, 17, 17, 19, 19, 23, 23, 23, 26,
  132. 26, 27, 27, 27, 29, 30, 30, 31, 31, 31, 32, 32, 32, 32, 34, 34,
  133. 34, 35, 37, 37, 17, 17, 17, 21, 21, 21, 21, 23, 23, 23, 24, 24,
  134. 24, 24, 25, 25, 25, 25, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30,
  135. 30, 30, 31, 31, 31, 31, 33, 33, 33, 35, 35, 17, 17, 17, 18, 24,
  136. 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 33, 33, 33, 36, 18,
  137. 18, 18, 20, 20, 20, 26, 26, 27, 27, 27, 28, 28, 28, 28, 31, 31,
  138. 31, 33, 33, 33, 37, 37, 37, 18, 18, 18, 21, 21, 21, 21, 22, 22,
  139. 22, 26, 26, 26, 26, 27, 27, 27, 29, 29, 29, 29, 30, 30, 30, 30,
  140. 31, 31, 31, 31, 33, 33, 18, 18, 18, 19, 19, 19, 22, 22, 22, 24,
  141. 24, 24, 24, 25, 25, 25, 25, 27, 27, 27, 27, 29, 29, 29, 29, 30,
  142. 30, 30, 30, 32, 32, 32, 32, 34, 34, 34, 35, 35, 37, 37, 37, 22,
  143. 22, 22, 22, 24, 24, 24, 24, 25, 25, 25, 25, 28, 28, 28, 28, 35,
  144. 37, 37, 37, 19, 22, 22, 24, 24, 24, 25, 25, 25, 26, 26, 28, 28,
  145. 28, 32, 32, 32, 33, 35, 36, 20, 20, 20, 23, 23, 23, 27, 27, 29,
  146. 29, 29, 36, 36, 20, 28), period = structure(c(1L, 2L, 4L, 1L,
  147. 2L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  148. 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  149. 2L, 3L, 4L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 2L, 3L, 4L, 4L, 1L, 2L,
  150. 3L, 4L, 3L, 4L, 1L, 3L, 4L, 1L, 2L, 3L, 2L, 4L, 1L, 2L, 4L, 1L,
  151. 2L, 3L, 1L, 2L, 3L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
  152. 3L, 4L, 1L, 2L, 4L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L,
  153. 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 2L,
  154. 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 2L, 3L, 4L, 1L, 2L, 3L, 1L,
  155. 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
  156. 4L, 1L, 3L, 1L, 3L, 4L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 3L, 4L, 1L,
  157. 2L, 3L, 4L, 1L, 3L, 1L, 3L, 4L, 1L, 2L, 3L, 1L, 3L, 2L, 3L, 1L,
  158. 2L, 3L, 4L, 1L, 2L, 4L, 1L, 2L, 3L, 4L, 1L, 3L, 4L, 1L, 2L, 3L,
  159. 1L, 2L, 3L, 4L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 1L, 2L,
  160. 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L,
  161. 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 2L,
  162. 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 4L, 2L, 3L, 4L, 2L, 3L, 4L,
  163. 1L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 4L, 1L, 3L, 4L, 1L, 2L, 2L, 3L,
  164. 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 3L, 4L, 1L, 2L,
  165. 3L, 4L, 1L, 2L, 4L, 2L, 3L, 2L, 3L, 4L, 1L, 2L, 1L, 2L, 3L, 1L,
  166. 2L, 3L, 1L, 2L, 3L, 2L, 3L, 4L, 1L, 3L, 1L, 3L, 4L, 2L, 1L, 1L,
  167. 1L, 2L, 3L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
  168. 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L,
  169. 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L,
  170. 1L, 3L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
  171. 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L,
  172. 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 3L, 1L, 1L, 2L, 3L, 1L,
  173. 2L, 3L, 1L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 4L, 1L,
  174. 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L,
  175. 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
  176. 3L, 1L, 2L, 3L, 4L, 1L, 4L, 1L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L,
  177. 1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L,
  178. 3L, 4L, 1L, 2L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L,
  179. 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
  180. 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 4L, 1L, 2L, 3L, 1L, 2L,
  181. 3L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 3L, 1L,
  182. 2L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 1L, 3L, 4L, 1L,
  183. 2L, 3L, 4L, 1L, 2L, 4L, 3L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 1L,
  184. 2L, 3L, 1L, 2L, 1L, 3L, 4L, 1L, 2L, 1L, 2L, 3L, 2L, 1L, 3L, 1L,
  185. 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 3L, 1L,
  186. 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L,
  187. 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L,
  188. 3L, 2L, 3L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  189. 2L, 3L, 4L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 1L,
  190. 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
  191. 2L, 3L, 1L, 2L, 3L, 4L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 3L, 4L,
  192. 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 1L, 2L,
  193. 3L, 1L, 2L, 3L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  194. 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  195. 2L, 3L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
  196. 2L, 3L, 4L, 1L, 2L, 3L, 4L, 2L, 1L, 2L, 3L, 3L, 3L, 4L, 2L, 3L,
  197. 4L, 2L, 3L, 4L, 1L, 2L, 1L, 2L, 4L, 1L, 2L, 3L, 3L, 3L, 3L, 1L,
  198. 2L, 3L, 1L, 3L, 4L, 2L, 3L, 2L, 3L, 4L, 1L, 2L, 1L, 1L), levels = c("p1",
  199. "p2", "p3", "p4"), class = "factor"), group = structure(c(2L,
  200. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  201. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  202. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  203. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  204. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  205. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  206. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  207. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  208. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  209. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  210. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  211. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  212. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  213. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  214. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  215. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  216. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  217. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  218. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  219. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  220. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  221. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  222. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  223. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  224. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  225. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  226. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  227. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  228. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  229. 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
  230. 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  231. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  232. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  233. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  234. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  235. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  236. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  237. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  238. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  239. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  240. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  241. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  242. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  243. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  244. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  245. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  246. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  247. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  248. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  249. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  250. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  251. 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
  252. 1L), levels = c("con", "int"), class = "factor"), id2 = c(1,
  253. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  254. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4,
  255. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  256. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  257. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
  258. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  259. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7,
  260. 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
  261. 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  262. 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10,
  263. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
  264. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11,
  265. 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
  266. 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
  267. 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
  268. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14,
  269. 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
  270. 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16,
  271. 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
  272. 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
  273. 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17,
  274. 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
  275. 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
  276. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  277. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  278. 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
  279. 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
  280. 19, 19, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
  281. 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22,
  282. 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23,
  283. 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
  284. 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25,
  285. 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
  286. 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
  287. 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
  288. 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27,
  289. 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
  290. 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
  291. 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
  292. 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29,
  293. 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
  294. 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
  295. 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
  296. 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
  297. 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
  298. 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32,
  299. 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33,
  300. 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33,
  301. 33, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35,
  302. 35), date = c(34, 34, 34, 17, 17, 19, 19, 19, 21, 21, 21, 24,
  303. 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 33,
  304. 33, 33, 33, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 18, 19,
  305. 19, 19, 21, 21, 21, 23, 24, 24, 24, 24, 26, 26, 27, 27, 27, 34,
  306. 34, 34, 36, 36, 38, 38, 38, 17, 17, 17, 18, 18, 18, 21, 21, 21,
  307. 22, 22, 22, 23, 23, 23, 25, 25, 25, 25, 26, 26, 26, 27, 27, 27,
  308. 37, 37, 37, 38, 38, 38, 38, 16, 16, 16, 18, 18, 18, 19, 19, 19,
  309. 21, 21, 21, 23, 23, 23, 23, 25, 25, 26, 26, 26, 26, 32, 32, 32,
  310. 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 16,
  311. 16, 16, 17, 17, 17, 21, 21, 21, 21, 23, 23, 25, 25, 25, 26, 26,
  312. 32, 32, 32, 32, 33, 33, 33, 34, 34, 34, 34, 35, 35, 38, 38, 38,
  313. 17, 17, 17, 18, 18, 21, 21, 23, 23, 23, 23, 25, 25, 25, 26, 26,
  314. 26, 26, 32, 32, 32, 34, 34, 34, 35, 35, 35, 35, 16, 19, 19, 16,
  315. 16, 16, 17, 17, 19, 19, 21, 21, 21, 21, 22, 22, 22, 27, 27, 27,
  316. 27, 32, 32, 32, 32, 33, 33, 33, 33, 35, 35, 35, 35, 36, 36, 36,
  317. 36, 16, 16, 16, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23,
  318. 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 27, 32,
  319. 32, 33, 33, 33, 34, 34, 35, 35, 35, 19, 19, 19, 23, 23, 23, 24,
  320. 24, 24, 24, 25, 25, 25, 27, 27, 27, 27, 33, 33, 33, 37, 37, 23,
  321. 23, 23, 38, 38, 16, 16, 16, 17, 17, 17, 18, 18, 18, 21, 21, 21,
  322. 22, 22, 23, 23, 23, 24, 16, 18, 19, 19, 19, 20, 20, 20, 22, 23,
  323. 24, 16, 16, 16, 18, 18, 18, 19, 19, 19, 22, 22, 22, 23, 23, 23,
  324. 23, 24, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27,
  325. 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36,
  326. 38, 38, 38, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21, 21, 22,
  327. 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 35, 35, 35, 36, 36, 36,
  328. 36, 37, 37, 16, 17, 17, 17, 18, 18, 18, 19, 19, 21, 23, 23, 23,
  329. 25, 25, 25, 25, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35,
  330. 35, 35, 36, 36, 36, 36, 38, 38, 38, 38, 16, 16, 16, 19, 19, 19,
  331. 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 25, 25, 35,
  332. 35, 36, 36, 36, 36, 37, 37, 37, 23, 32, 32, 32, 38, 38, 38, 42,
  333. 42, 42, 42, 62, 62, 62, 64, 64, 64, 64, 68, 68, 72, 72, 72, 32,
  334. 32, 44, 44, 44, 44, 48, 48, 48, 48, 56, 56, 56, 68, 68, 68, 74,
  335. 74, 74, 32, 32, 32, 42, 42, 42, 50, 50, 50, 50, 60, 60, 60, 60,
  336. 62, 62, 62, 64, 64, 64, 72, 72, 72, 32, 32, 32, 40, 40, 68, 68,
  337. 68, 70, 70, 34, 34, 34, 36, 42, 42, 42, 46, 46, 46, 46, 52, 52,
  338. 52, 52, 54, 54, 58, 58, 58, 60, 60, 60, 60, 64, 64, 64, 66, 68,
  339. 68, 68, 70, 70, 72, 72, 72, 34, 34, 34, 38, 38, 46, 46, 46, 52,
  340. 52, 54, 54, 54, 58, 60, 60, 62, 62, 62, 64, 64, 64, 64, 68, 68,
  341. 68, 70, 74, 74, 34, 34, 34, 42, 42, 42, 42, 46, 46, 46, 48, 48,
  342. 48, 48, 50, 50, 50, 50, 56, 56, 56, 56, 58, 58, 58, 58, 60, 60,
  343. 60, 60, 62, 62, 62, 62, 66, 66, 66, 70, 70, 34, 34, 34, 36, 48,
  344. 48, 48, 48, 50, 50, 50, 50, 52, 52, 52, 52, 66, 66, 66, 72, 36,
  345. 36, 36, 40, 40, 40, 52, 52, 54, 54, 54, 56, 56, 56, 56, 62, 62,
  346. 62, 66, 66, 66, 74, 74, 74, 36, 36, 36, 42, 42, 42, 42, 44, 44,
  347. 44, 52, 52, 52, 52, 54, 54, 54, 58, 58, 58, 58, 60, 60, 60, 60,
  348. 62, 62, 62, 62, 66, 66, 36, 36, 36, 38, 38, 38, 44, 44, 44, 48,
  349. 48, 48, 48, 50, 50, 50, 50, 54, 54, 54, 54, 58, 58, 58, 58, 60,
  350. 60, 60, 60, 64, 64, 64, 64, 68, 68, 68, 70, 70, 74, 74, 74, 44,
  351. 44, 44, 44, 48, 48, 48, 48, 50, 50, 50, 50, 56, 56, 56, 56, 70,
  352. 74, 74, 74, 38, 44, 44, 48, 48, 48, 50, 50, 50, 52, 52, 56, 56,
  353. 56, 64, 64, 64, 66, 70, 72, 40, 40, 40, 46, 46, 46, 54, 54, 58,
  354. 58, 58, 72, 72, 40, 56)), row.names = c(NA, -834L), class = c("tbl_df",
  355. "tbl", "data.frame"))

答案1

得分: 1

这个回答使用了marginaleffects的开发版本(0.9.0.9043),你可以按照这里的说明安装它:https://vincentarelbundock.github.io/marginaleffects/

请注意,额外的与lme4相关的参数必须提供给predictions()函数,而不是你在第二个示例中所做的datagrid()函数。

此外,我强烈建议你避免使用include_random,并使用lme4建模包本身提供的默认参数(通过predict.merMod),在这种情况下是re.formallow.new.levels

  1. library(lme4)
  2. library(lmerTest)
  3. library(marginaleffects)
  4. library(dplyr)
  5. dat_long$group <- as.factor(dat_long$group)
  6. dat_long$period <- as.factor(dat_long$period)
  7. dat_long <- dat_long %>% mutate(group2 = group)
  8. m222 <- lmer(money ~ session + period + group2 + (1 | id2) + (1 | session / date / period), data = dat_long )
  9. comparisons(
  10. m222,
  11. variables = "period",
  12. re.form = NA,
  13. newdata = datagrid(period = c("p1", "p2", "p3", "p4")))
  14. #
  15. # Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % session group2 id2 date
  16. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  17. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  18. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  19. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  20. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  21. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  22. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  23. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  24. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  25. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  26. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  27. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  28. #
  29. # Prediction type: response
  30. # Columns: rowid, type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, money, session, group2, id2, date, period
  1. predictions(
  2. m222,
  3. newdata = datagrid(
  4. id2 = NA,
  5. session = seq(from = 16, to = 38, by = 1)),
  6. re.form = NA,
  7. allow.new.levels = TRUE)
  8. #
  9. # Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % period group2 date id2 session
  10. # 19654 656.1 29.96 < 2.22e-16 18368 20940 p1 int 37.90168 NA 16
  11. # 19649 647.4 30.35 < 2.22e-16 18380 20917 p1 int 37.90168 NA 17
  12. # 19643 639.5 30.72 < 2.22e-16 18390 20896 p1 int 37.90168 NA 18
  13. # 19637 632.5 31.05 < 2.22e-16 18398 20877 p1 int 37.90168 NA 19
  14. # 19632 626.2 31.35 < 2.22e-16 18404 20859 p1 int 37.90168 NA 20
  15. # 19626 620.9 31.61 < 2.22e-16 18409 20843 p1 int 37.90168 NA 21
  16. # 19621 616.5 31.83 < 2.22e-16 18412 20829 p1 int 37.90168 NA 22
  17. # 19615 613.0 32.00 < 2.22e-16 18414 20817 p1 int 37.90168 NA 23
  18. # 19610 610.5 32.12 < 2.22e-16 18413 208
  19. <details>
  20. <summary>英文:</summary>
  21. This answer uses the development version (0.9.0.9043) of `marginaleffects`, which you can install by following the instructions here: &lt;https://vincentarelbundock.github.io/marginaleffects/&gt;
  22. Please note that the extra `lme4`-related arguments must be supplied to the `predictions()` function, and not to the `datagrid()` function as you do in your second example.
  23. Also, I strongly suggest you avoid `include_random` and use the default arguments supplied by the `lme4` modelling package itself (via `predict.merMod`). In this case: `re.form` and `allow.new.levels`.
  24. ``` r
  25. library(lme4)
  26. library(lmerTest)
  27. library(marginaleffects)
  28. library(dplyr)
  29. dat_long$group &lt;- as.factor(dat_long$group)
  30. dat_long$period &lt;- as.factor(dat_long$period)
  31. dat_long &lt;- dat_long %&gt;% mutate(group2 = group)
  32. m222 &lt;- lmer(money ~ session + period + group2 + (1 | id2) + (1 | session / date / period), data = dat_long )
  33. comparisons(
  34. m222,
  35. variables = &quot;period&quot;,
  36. re.form = NA,
  37. newdata = datagrid(period = c(&quot;p1&quot;, &quot;p2&quot;, &quot;p3&quot;, &quot;p4&quot;)))
  38. #
  39. # Term Contrast Estimate Std. Error z Pr(&gt;|z|) 2.5 % 97.5 % session group2 id2 date
  40. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  41. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  42. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  43. # period p2 - p1 -361.6 260.0 -1.391 0.1643688 -871.3 148.1 23 int 16 37.90168
  44. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  45. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  46. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  47. # period p3 - p1 -745.6 260.0 -2.868 0.0041366 -1255.3 -236.0 23 int 16 37.90168
  48. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  49. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  50. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  51. # period p4 - p1 -1371.6 318.4 -4.308 1.6492e-05 -1995.6 -747.5 23 int 16 37.90168
  52. #
  53. # Prediction type: response
  54. # Columns: rowid, type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high, predicted, predicted_hi, predicted_lo, money, session, group2, id2, date, period
  1. predictions(
  2. m222,
  3. newdata = datagrid(
  4. id2 = NA,
  5. session = seq(from = 16, to = 38, by = 1)),
  6. re.form = NA,
  7. allow.new.levels = TRUE)
  8. #
  9. # Estimate Std. Error z Pr(&gt;|z|) 2.5 % 97.5 % period group2 date id2 session
  10. # 19654 656.1 29.96 &lt; 2.22e-16 18368 20940 p1 int 37.90168 NA 16
  11. # 19649 647.4 30.35 &lt; 2.22e-16 18380 20917 p1 int 37.90168 NA 17
  12. # 19643 639.5 30.72 &lt; 2.22e-16 18390 20896 p1 int 37.90168 NA 18
  13. # 19637 632.5 31.05 &lt; 2.22e-16 18398 20877 p1 int 37.90168 NA 19
  14. # 19632 626.2 31.35 &lt; 2.22e-16 18404 20859 p1 int 37.90168 NA 20
  15. # 19626 620.9 31.61 &lt; 2.22e-16 18409 20843 p1 int 37.90168 NA 21
  16. # 19621 616.5 31.83 &lt; 2.22e-16 18412 20829 p1 int 37.90168 NA 22
  17. # 19615 613.0 32.00 &lt; 2.22e-16 18414 20817 p1 int 37.90168 NA 23
  18. # 19610 610.5 32.12 &lt; 2.22e-16 18413 20806 p1 int 37.90168 NA 24
  19. # 19604 608.9 32.20 &lt; 2.22e-16 18411 20798 p1 int 37.90168 NA 25
  20. # 19599 608.2 32.22 &lt; 2.22e-16 18406 20791 p1 int 37.90168 NA 26
  21. # 19593 608.6 32.19 &lt; 2.22e-16 18400 20786 p1 int 37.90168 NA 27
  22. # 19587 609.9 32.12 &lt; 2.22e-16 18392 20783 p1 int 37.90168 NA 28
  23. # 19582 612.1 31.99 &lt; 2.22e-16 18382 20782 p1 int 37.90168 NA 29
  24. # 19576 615.3 31.82 &lt; 2.22e-16 18370 20782 p1 int 37.90168 NA 30
  25. # 19571 619.4 31.60 &lt; 2.22e-16 18357 20785 p1 int 37.90168 NA 31
  26. # 19565 624.4 31.33 &lt; 2.22e-16 18341 20789 p1 int 37.90168 NA 32
  27. # 19560 630.4 31.03 &lt; 2.22e-16 18324 20795 p1 int 37.90168 NA 33
  28. # 19554 637.1 30.69 &lt; 2.22e-16 18305 20803 p1 int 37.90168 NA 34
  29. # 19549 644.8 30.32 &lt; 2.22e-16 18285 20812 p1 int 37.90168 NA 35
  30. # 19543 653.2 29.92 &lt; 2.22e-16 18263 20823 p1 int 37.90168 NA 36
  31. # 19538 662.4 29.49 &lt; 2.22e-16 18239 20836 p1 int 37.90168 NA 37
  32. # 19532 672.4 29.05 &lt; 2.22e-16 18214 20850 p1 int 37.90168 NA 38
  33. #
  34. # Prediction type: response
  35. # Columns: rowid, type, estimate, std.error, statistic, p.value, conf.low, conf.high, money, period, group2, date, id2, session

huangapple
  • 本文由 发表于 2023年2月14日 22:20:00
  • 转载请务必保留本文链接:https://go.coder-hub.com/75449154.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定