英文:
Changing weather data frequency from 3 hours to 1 hour
问题
以下是已经翻译好的代码部分:
df_expanded = df.set_index(['date', 'city', 'condition'])\
.hour.unstack().reset_index().melt(id_vars=['date', 'city', 'condition'], value_name='hour')\
.dropna()\
.drop(columns=['variable'])
df_expanded = df_expanded.sort_values(by=['date', 'city', 'condition', 'hour'])\
.ffill()
result = df_expanded.merge(df, on=['date', 'city', 'condition', 'hour'], how='left')\
.dropna()\
.drop_duplicates()
英文:
I have weather data which has the following column where the first 3 rows look like this
date | hour | city | condition | snow | rain |
---|---|---|---|---|---|
2023-01-30 | 3 | berlin | snow | 1 | 0 |
2023-01-30 | 6 | berlin | rain | 0 | 1 |
2023-01-30 | 9 | berlin | clear | 0 | 0 |
I want to write code where which will create rows for the missing hours and replace the values with the hour city and date closest to that hour. The result dataframe should look like
date | hour | city | condition | snow | rain |
---|---|---|---|---|---|
2023-01-30 | 3 | berlin | snow | 1 | 0 |
2023-01-30 | 4 | berlin | snow | 1 | 0 |
2023-01-30 | 5 | berlin | snow | 1 | 0 |
2023-01-30 | 6 | berlin | rain | 0 | 1 |
2023-01-30 | 7 | berlin | rain | 0 | 1 |
2023-01-30 | 8 | berlin | rain | 0 | 1 |
2023-01-30 | 9 | berlin | clear | 0 | 0 |
2023-01-30 | 10 | berlin | clear | 0 | 0 |
2023-01-30 | 10 | berlin | clear | 0 | 0 |
Note: I have many cities and many rows.
I tried this but dint get the right solution and its not optimum for large number of rows (cities and hours)
df_expanded = df.set_index(['date', 'city', 'condition'])\
.hour.unstack().reset_index().melt(id_vars=['date', 'city', 'condition'], value_name='hour')\
.dropna()\
.drop(columns=['variable'])
df_expanded = df_expanded.sort_values(by=['date', 'city', 'condition', 'hour'])\
.ffill()
result = df_expanded.merge(df, on=['date', 'city', 'condition', 'hour'], how='left')\
.dropna()\
.drop_duplicates()
Open to easier and simpler solutions
答案1
得分: 2
以下是您提供的代码部分的翻译:
# some sample data
d = {'date': ['2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30'],
'hour': [3, 6, 9, 3, 6, 9],
'city': ['berlin', 'berlin', 'berlin', 'chicago', 'chicago', 'chicago'],
'condition': ['snow', 'rain', 'clear', 'snow', 'snow', 'clear'],
'snow': [1, 0, 0, 1, 1, 0],
'rain': [0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(d)
# convert to datetime and the hour to a timedelta and set as the index
df = df.set_index(pd.to_datetime(df['date']) + pd.to_timedelta(df['hour'], unit='h')).drop(columns=['date', 'hour'])
# groupby the city and resample to the hour and ffill the missing data
df.groupby('city').resample('h').ffill().reset_index(level=0, drop=True)
如果您需要原始的日期和小时列,可以添加以下内容:
new_df = df.groupby('city').resample('h').ffill().reset_index(level=0, drop=True)
new_df = new_df.reset_index().rename(columns={'index': 'date'})
new_df['hour'] = new_df['date'].dt.hour
new_df['date'] = new_df['date'].dt.date
希望这对您有所帮助。
英文:
It is easiest to ffill
the missing data like below but I will try to also think of a solution for the closest time
# some sample data
d = {'date': ['2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30', '2023-01-30'],
'hour': [3, 6, 9, 3, 6, 9],
'city': ['berlin', 'berlin', 'berlin', 'chicago', 'chicago', 'chicago'],
'condition': ['snow', 'rain', 'clear', 'snow', 'snow', 'clear'],
'snow': [1, 0, 0, 1, 1, 0],
'rain': [0, 1, 0, 0, 0, 0]}
df = pd.DataFrame(d)
# convert to datetime and the hour to a timedelta and set as the index
df = df.set_index(pd.to_datetime(df['date']) + pd.to_timedelta(df['hour'], unit='h')).drop(columns=['date', 'hour'])
# groupby the city and resample to the hour and ffill the missing data
df.groupby('city').resample('h').ffill().reset_index(level=0, drop=True)
city condition snow rain
2023-01-30 03:00:00 berlin snow 1 0
2023-01-30 04:00:00 berlin snow 1 0
2023-01-30 05:00:00 berlin snow 1 0
2023-01-30 06:00:00 berlin rain 0 1
2023-01-30 07:00:00 berlin rain 0 1
2023-01-30 08:00:00 berlin rain 0 1
2023-01-30 09:00:00 berlin clear 0 0
2023-01-30 03:00:00 chicago snow 1 0
2023-01-30 04:00:00 chicago snow 1 0
2023-01-30 05:00:00 chicago snow 1 0
2023-01-30 06:00:00 chicago snow 1 0
2023-01-30 07:00:00 chicago snow 1 0
2023-01-30 08:00:00 chicago snow 1 0
2023-01-30 09:00:00 chicago clear 0 0
if you want the original columns of date and hour then add the following
new_df = df.groupby('city').resample('h').ffill().reset_index(level=0, drop=True)
new_df = new_df.reset_index().rename(columns={'index': 'date'})
new_df['hour'] = new_df['date'].dt.hour
new_df['date'] = new_df['date'].dt.date
date city condition snow rain hour
0 2023-01-30 berlin snow 1 0 3
1 2023-01-30 berlin snow 1 0 4
2 2023-01-30 berlin snow 1 0 5
3 2023-01-30 berlin rain 0 1 6
4 2023-01-30 berlin rain 0 1 7
5 2023-01-30 berlin rain 0 1 8
6 2023-01-30 berlin clear 0 0 9
7 2023-01-30 chicago snow 1 0 3
8 2023-01-30 chicago snow 1 0 4
9 2023-01-30 chicago snow 1 0 5
10 2023-01-30 chicago snow 1 0 6
11 2023-01-30 chicago snow 1 0 7
12 2023-01-30 chicago snow 1 0 8
13 2023-01-30 chicago clear 0 0 9
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论