英文:
How to find the maximum/minimum offset in np.diagonal()?
问题
我想以列表形式获取numpy矩阵的所有对角线,np.diagonal()
可以实现这一目的,但切片表示法不适用于它。
我尝试使用切片表示法,认为只需在其中放置一个分号,它就会返回我想要的内容,但这并不起作用。
示例:
这是我的矩阵
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
我希望它返回一个类似这样的列表:
[[7],[0,1],[8,5,6],[0,4,8,3]...[3,3],[4]]
尽管我可以数它,但我想知道是否有办法告诉np.diagonal
的最大/最小偏移量。矩阵的大小可能会有所变化。
英文:
I want to get back all the diagonals of a numpy matrix in the form of a list and np.diagonal()
does that but slice notation doesn't work on it.
I tried using slice notation, thinking by just putting a semicolon in there it would return what I wanted, but it did not work.
Example:
This is my matrix
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
I want it to return a list like this:
[[7],[0,1],[8,5,6],[0,4,8,3]...[3,3],[4]]
Though I can count it, I want to know if there is a way to tell the max/min offset of np.diagonal
. The matrix's size may vary..
答案1
得分: 0
你可以使用列表推导式:
import numpy as np
arr = np.random.randint(10, size=(4, 4)) # 在这里替换你的数组
h, w = arr.shape
out = [np.diag(arr, k) for k in range(-h+1, w)]
arr
array([[9, 6, 5, 8],
[1, 5, 1, 2],
[7, 0, 6, 5],
[2, 6, 9, 8]])
out
[array([2]), array([7, 6]), array([1, 0, 9]), array([9, 5, 6, 8]), array([6, 1, 5]), array([5, 2]), array([8])]
英文:
You can use a list comprehension:
import numpy as np
arr = np.random.randint(10, size=(4, 4)) # Your array here
h, w = arr.shape
out = [ np.diag(arr, k) for k in range(-h+1, w) ]
>>> arr
array([[9, 6, 5, 8],
[1, 5, 1, 2],
[7, 0, 6, 5],
[2, 6, 9, 8]])
>>> out
[array([2]), array([7, 6]), array([1, 0, 9]), array([9, 5, 6, 8]), array([6, 1, 5]), array([5, 2]), array([8])]
</details>
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论