separation of training data pyTorch

huangapple go评论132阅读模式
英文:

separation of training data pyTorch

问题

这个错误是由于 torch.utils.data.random_split 函数的参数传递有问题导致的。你可以查看以下代码的这一行:

train_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), int(0.2 * len(dataset))])

错误的原因是 torch.utils.data.random_split 函数的第二个参数应该是包含两个元素的列表,这两个元素分别表示拆分后的两个数据集的长度。但你的代码中提供了一个包含两个整数的列表,可能是因为 len(dataset) 的值不是整数,导致了这个错误。

要修复这个问题,你可以将第二个参数修改为包含两个元素的列表,如下所示:

train_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), len(dataset) - int(0.8 * len(dataset))])

这将正确地将数据集拆分成训练集和验证集,其中80%的数据分配给训练集,20%的数据分配给验证集。

英文:

I have a code, with it, I wanted to train a neural network and save the finished model as a file. But I am getting an error due to incorrect distribution of training and training data. Can't understand why:
`import torch

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

class ChatBot(nn.Module):

    def __init__(self, input_size, hidden_size, num_layers, output_size):

        super().__init__()

        self.hidden_size = hidden_size

        self.num_layers = num_layers

        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)

        self.fc = nn.Linear(hidden_size, output_size)

    

    def forward(self, x, hidden):

        out, hidden = self.lstm(x, hidden)

        out = self.fc(out[:, -1, :])

        return out, hidden



    def init_hidden(self, batch_size):

        weight = next(self.parameters()).data

        hidden = (weight.new(self.num_layers, batch_size, self.hidden_size).zero_(),

              weight.new(self.num_layers, batch_size, self.hidden_size).zero_())

        return hidden

class ChatDataset(torch.utils.data.Dataset):

    def __init__(self, data):

        self.data = data

    

    def __len__(self):

        return len(self.data)



    def __getitem__(self, index):

        return self.data[index]



def train(model, train_loader, loss_fn, optimizer, device):

    model.train()

    for inputs, targets in train_loader:

        inputs = inputs.to(device)

        targets = targets.to(device)

    

        hidden = model.init_hidden(inputs.size(0))

        hidden = tuple([each.data for each in hidden])

    

        optimizer.zero_grad()

        outputs, _ = model(inputs, hidden)

        loss = loss_fn(outputs.view(-1), targets.view(-1))

        loss.backward()

        optimizer.step()

    

def evaluate(model, val_loader, loss_fn, device):

    model.eval()

    total_loss = 0

    with torch.no_grad():

        for inputs, targets in val_loader:

            inputs = inputs.to(device)

            targets = targets.to(device)

        

            hidden = model.init_hidden(inputs.size(0))

            hidden = tuple([each.data for each in hidden])

        

            outputs, _ = model(inputs, hidden)

            total_loss += loss_fn(outputs, targets).item()

    return total_loss / len(val_loader)

device = torch.device("cuda" if 
torch.cuda.is_available() else "cpu")

input_size = 500

hidden_size = 128

num_layers = 2

output_size = 500

model = ChatBot(input_size, hidden_size, num_layers, output_size)

model = model.to(device)

data = [("Hi, how are you?", "I'm doing well, thank you for asking."),

("What's your name?", "I'm a chatbot, I don't have a name."),

("What's the weather like?", "I'm not sure, I don't have access to current weather information."),

("What's the time?", "I'm not sure, I don't have access to the current time.")]

dataset = ChatDataset(data)

train_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), int(0.2 * len(dataset))])

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)

val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)

loss_fn = nn.MSELoss()

optimizer =  optim.Adam(model.parameters(), lr=0.001)

num_epochs = 100

for epoch in range(num_epochs):

   train(model, train_loader, loss_fn, optimizer, device)

   val_loss = evaluate(model, val_loader, loss_fn, device)

   print("Epoch [{}/{}], Validation Loss: {:.4f}".format(epoch+1, num_epochs, val_loss))

torch.save(model.state_dict(), 'chatbot_model.pt')`

But, when I start this code, I have an error:
` ValueError
Traceback (most recent call last)

<ipython-input-8-ae2a6dd1bc7c> in 
<module>

 78 dataset = ChatDataset(data)

 79 

---> 80 train_dataset, val_dataset = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), int(0.2 * len(dataset))])

 81 

 82 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)

/usr/local/lib/python3.8/dist-packages/torch/utils/data/dataset.py in random_split(dataset, lengths, generator)

345     # Cannot verify that dataset is Sized

346     if sum(lengths) != len(dataset):    # type: ignore[arg-type]

--> 347         raise ValueError("Sum of input lengths does not equal the length of the input dataset!")

348 

349     indices = randperm(sum(lengths), generator=generator).tolist()  # type: ignore[call-overload]

ValueError: Sum of input lengths does not equal the length of the input dataset!`

I don't know, why this error. Everything seems to be correct.

答案1

得分: 0

[int(0.8 * len(dataset)), int(0.2 * len(dataset))] 这个计算可能存在精度损失,所以数据集中的记录数量并没有完全考虑进去。

例如:

int(.8 * 56) + int(.2 * 56) = 55

英文:

I suspect there could be a loss of precision in this calculation,
[int(0.8 * len(dataset)), int(0.2 * len(dataset))]

so the number of records in the dataset is not fully accounted for.

for example:
>>> int(.8 * 56) + int(.2 * 56) = 55
>>>

答案2

得分: 0

类型转换将值转换为整数会导致数据集中图像的总数以及训练和测试集中图像数量的分布出现差异。

这不是最理想的代码,但用以下代码替换它将有效:

num_train_images = int(0.8 * len(dataset))
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [num_train_images, len(dataset) - num_train_images])
英文:

The typecasting of the values to an integer is causing a difference in the total number of images in the dataset and the distribution of the number of images in train and test.

Not the most ideal code, but replacing it with the following will work :

num_train_images = int(0.8 * len(dataset))
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [num_train_images, len(dataset) - num_train_images])

huangapple
  • 本文由 发表于 2023年2月6日 07:31:28
  • 转载请务必保留本文链接:https://go.coder-hub.com/75356240.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定