Print whole numbers as integers in Pandas LaTeX conversion

huangapple go评论58阅读模式
英文:

Print whole numbers as integers in Pandas LaTeX conversion

问题

有没有办法确保整数始终显示为整数?

翻译好的部分:
"Is there any way to make sure that whole numbers are always displayed as integers?"

英文:

I'm trying to write a small script to print LaTeX tables based on CSV.
A lot of the functionality formerly in e.g. matrix2latex have now been included in Pandas proper, which is cool.

However, no matter what I do (I tried a number of the other suggestions on here, it ended up becoming a convoluted mess which in effect changes nothing), it keeps coming out like this:

[deco]/tmp/table ❱ python lala.py


Dataframe:

  Unnamed: 0     Treatment Implant Transgenic Untreated Mice  Transgenic Treated Mice  Wildtype Mice  Total Mice
0         P1   Armodafinil     VTA                     20+15                     20.0            5.0          60
1         P2           NaN      LC                        50                      NaN           10.0          60
2         P3  Escitalopram      DR                        20                     20.0            NaN          40
3         P4    Reboxetine      LC                        20                     20.0            NaN          40


LaTeX Table Conversion:

\begin{tabular}{lllllrrr}
 & Unnamed: 0 & Treatment & Implant & Transgenic Untreated Mice & Transgenic Treated Mice & Wildtype Mice & Total Mice \\
0 & P1 & Armodafinil & VTA & 20+15 & 20.000000 & 5.000000 & 60 \\
1 & P2 & nan & LC & 50 & nan & 10.000000 & 60 \\
2 & P3 & Escitalopram & DR & 20 & 20.000000 & nan & 40 \\
3 & P4 & Reboxetine & LC & 20 & 20.000000 & nan & 40 \\
\end{tabular}

[deco]/tmp/table ❱ cat lala.py
import pandas as pd

df = pd.read_csv("table.csv")
print("\n")
print("Dataframe:")
print("")
print(df)
tex = df.style.to_latex()
print("\n")
print("LaTeX Table Conversion:")
print("")
print(tex)
[deco]/tmp/table ❱ cat table.csv
,Treatment,Implant,Transgenic Untreated Mice,Transgenic Treated Mice,Wildtype Mice,Total Mice
P1,Armodafinil,VTA,20+15,20,5,60
P2,N/A,LC,50,,10,60
P3,Escitalopram,DR,20,20,,40
P4,Reboxetine,LC,20,20,,40

Is there any way to make sure that whole numbers are always displayed as integers?

答案1

得分: 1

你似乎遇到的问题是缺失的表格条目被解释为NaN,从而强制整个列变为浮点数,你可以通过使用以下方式防止空条目被解释为NaN并使它们保持为空:

import pandas as pd

df = pd.read_csv("table.csv", keep_default_na=False)
print(df)
tex = df.style.to_latex()
print(tex)

这将导致以下输出:

Unnamed: 0     Treatment Implant Transgenic Untreated Mice Transgenic Treated Mice Wildtype Mice  Total Mice
0         P1   Armodafinil     VTA                     20+15                      20             5          60
1         P2           N/A      LC                        50                                    10          60
2         P3  Escitalopram      DR                        20                      20                        40
3         P4    Reboxetine      LC                        20                      20                        40
\begin{tabular}{lllllllr}
 & Unnamed: 0 & Treatment & Implant & Transgenic Untreated Mice & Transgenic Treated Mice & Wildtype Mice & Total Mice \\
0 & P1 & Armodafinil & VTA & 20+15 & 20 & 5 & 60 \\
1 & P2 & N/A & LC & 50 &  & 10 & 60 \\
2 & P3 & Escitalopram & DR & 20 & 20 &  & 40 \\
3 & P4 & Reboxetine & LC & 20 & 20 &  & 40 \\
\end{tabular}

如果您对行号不满意,您可能希望删除csv文件第一行的第一个逗号,以获得类似以下的输出:

       Treatment Implant Transgenic Untreated Mice Transgenic Treated Mice Wildtype Mice  Total Mice
P1   Armodafinil     VTA                     20+15                      20             5          60
P2           N/A      LC                        50                                    10          60
P3  Escitalopram      DR                        20                      20                        40
P4    Reboxetine      LC                        20                      20                        40
\begin{tabular}{llllllr}
 & Treatment & Implant & Transgenic Untreated Mice & Transgenic Treated Mice & Wildtype Mice & Total Mice \\
P1 & Armodafinil & VTA & 20+15 & 20 & 5 & 60 \\
P2 & N/A & LC & 50 &  & 10 & 60 \\
P3 & Escitalopram & DR & 20 & 20 &  & 40 \\
P4 & Reboxetine & LC & 20 & 20 &  & 40 \\
\end{tabular}
英文:

the issue, that you seem to be facing is that missing table entries are interpreted as NaN, which then forces the entire column to float you can prevent the empty entries from getting read as NaN and have them just left empty by using

import pandas as pd

df = pd.read_csv("table.csv", keep_default_na=False)
print(df)
tex = df.style.to_latex()
print(tex)

this leads to the following output:

Unnamed: 0     Treatment Implant Transgenic Untreated Mice Transgenic Treated Mice Wildtype Mice  Total Mice
0         P1   Armodafinil     VTA                     20+15                      20             5          60
1         P2           N/A      LC                        50                                    10          60
2         P3  Escitalopram      DR                        20                      20                        40
3         P4    Reboxetine      LC                        20                      20                        40
\begin{tabular}{lllllllr}
 & Unnamed: 0 & Treatment & Implant & Transgenic Untreated Mice & Transgenic Treated Mice & Wildtype Mice & Total Mice \\
0 & P1 & Armodafinil & VTA & 20+15 & 20 & 5 & 60 \\
1 & P2 & N/A & LC & 50 &  & 10 & 60 \\
2 & P3 & Escitalopram & DR & 20 & 20 &  & 40 \\
3 & P4 & Reboxetine & LC & 20 & 20 &  & 40 \\
\end{tabular}

if you're dissatisfied with the numbering of the rows you might want to remove the first comma on the first line of your csv to get an output that looks like this:

       Treatment Implant Transgenic Untreated Mice Transgenic Treated Mice Wildtype Mice  Total Mice
P1   Armodafinil     VTA                     20+15                      20             5          60
P2           N/A      LC                        50                                    10          60
P3  Escitalopram      DR                        20                      20                        40
P4    Reboxetine      LC                        20                      20                        40
\begin{tabular}{llllllr}
 & Treatment & Implant & Transgenic Untreated Mice & Transgenic Treated Mice & Wildtype Mice & Total Mice \\
P1 & Armodafinil & VTA & 20+15 & 20 & 5 & 60 \\
P2 & N/A & LC & 50 &  & 10 & 60 \\
P3 & Escitalopram & DR & 20 & 20 &  & 40 \\
P4 & Reboxetine & LC & 20 & 20 &  & 40 \\
\end{tabular}

答案2

得分: 0

你可以在转换为LaTeX之前使用.astype(int)函数格式化整数。此外,你可以使用格式选项来控制LaTeX中所有列的格式:

import pandas as pd

df = pd.read_csv("table.csv")

# 格式化列为整数
df = df.astype({"Transgenic Untreated Mice": int, "Transgenic Treated Mice": int, "Wildtype Mice": int, "Total Mice": int})

# 在LaTeX中将所有列格式化为整数
tex = df.style.format("{:.0f}").to_latex()

print("\n")
print("数据框:")
print("")
print(df)
print("\n")
print("LaTeX表格转换:")
print("")
print(tex)
英文:

You can format the integers using the .astype(int) function before converting to LaTeX. Also, you can use the format option to control the formatting of all columns in LaTeX:

import pandas as pd

df = pd.read_csv("table.csv")

# Format columns as integers
df = df.astype({"Transgenic Untreated Mice": int, "Transgenic Treated Mice": int, "Wildtype Mice": int, "Total Mice": int})

# Format all columns as integers in LaTeX
tex = df.style.format("{:.0f}").to_latex()

print("\n")
print("Dataframe:")
print("")
print(df)
print("\n")
print("LaTeX Table Conversion:")
print("")
print(tex)

答案3

得分: 0

以下是翻译好的部分:

"A more general way to do that would be to convert the missing values to an integer (if possible) and to convert the datatype using convert_dtypes."

更一般的做法是将缺失值转换为整数(如果可能的话),并使用 convert_dtypes 转换数据类型。

"The same works without replacing nan values, convert_dtypes then replaces the datatype to Int64."

不替换NaN值的情况下也适用,convert_dtypes 然后将数据类型替换为Int64。

import pandas as pd

df = pd.read_csv("table.csv")

print("\n")
print("Dataframe:")
print("")
print(df)
tex = df.fillna(-1).convert_dtypes().to_latex()
print("\n")
print("LaTeX Table Conversion:")
print("")
print(tex)

LaTeX 表格转换:

\begin{tabular}{lllllrrr}
\toprule
{} & Unnamed: 0 &     Treatment & Implant & Transgenic Untreated Mice &  Transgenic Treated Mice &  Wildtype Mice &  Total Mice \\
\midrule
0 &         P1 &   Armodafinil &     VTA &                     20+15 &                       20 &              5 &          60 \\
1 &         P2 &            -1 &      LC &                        50 &                       -1 &             10 &          60 \\
2 &         P3 &  Escitalopram &      DR &                        20 &                       20 &             -1 &          40 \\
3 &         P4 &    Reboxetine &      LC &                        20 &                       20 &             -1 &          40 \\
\bottomrule
\end{tabular}
英文:

A more general way to do that would be to convert the missing values to an integer (if possible) and to convert the datatype using convert_dtypes
.

The same works without replacing nan values, convert_dtypes then replaces the datatype to Int64.

import pandas as pd

df = pd.read_csv("table.csv")

print("\n")
print("Dataframe:")
print("")
print(df)
tex = df.fillna(-1).convert_dtypes().to_latex()
print("\n")
print("LaTeX Table Conversion:")
print("")
print(tex)



LaTeX Table Conversion:

\begin{tabular}{lllllrrr}
\toprule
{} & Unnamed: 0 &     Treatment & Implant & Transgenic Untreated Mice &  Transgenic Treated Mice &  Wildtype Mice &  Total Mice \\
\midrule
0 &         P1 &   Armodafinil &     VTA &                     20+15 &                       20 &              5 &          60 \\
1 &         P2 &            -1 &      LC &                        50 &                       -1 &             10 &          60 \\
2 &         P3 &  Escitalopram &      DR &                        20 &                       20 &             -1 &          40 \\
3 &         P4 &    Reboxetine &      LC &                        20 &                       20 &             -1 &          40 \\
\bottomrule
\end{tabular}

huangapple
  • 本文由 发表于 2023年2月6日 06:57:26
  • 转载请务必保留本文链接:https://go.coder-hub.com/75356081.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定