旋转文本并不改变文本在处理中的位置。

huangapple go评论67阅读模式
英文:

Rotating text not the position of the text in processing

问题

我正在尝试制作一个时钟,并且希望所有的数字都处于正确的位置,但它们都被旋转了,例如6被倒置,而12是正确的。有没有办法只旋转文本,而不改变文本的位置?

我的代码是:

push();
  textSize(48);
  for (int i = 1; i < 13; i++) {
    int offset = -15;
    if (str(i).length() == 2) {
      offset -= 14.5;
    }
    rotate(radians(30));
    text(i, offset, -350);
    //println(i*30);
  }
  pop();
英文:

i am trying to make a clock and have all the numbers in the correct place but they are all rotated e.g. 6 is upside down whereas 12 is correct. is there anyway to rotate just the text not the position of the text?

my code is

push();
  textSize(48);
  for (int i = 1; i &lt; 13; i++) {
    int offset = -15;
    if (str(i).length() == 2) {
      offset -= 14.5;
    }
    rotate(radians(30));
    text(i, offset, -350);
    //println(i*30);
  }
  pop();

答案1

得分: 8

未看代码,我的直觉是你使用了 rotate() 函数,但可能你没有使用 pushMatrix()/popMatrix(); 来将坐标空间隔离到本地空间,以便可以临时旋转。

我建议阅读 2D 变换教程

正如教程所提到的,变换的顺序很重要:

size(300, 300);
background(0);
stroke(255);
// 文本居中对齐
textAlign(CENTER);
// 将全局坐标原点移动到画布中心
translate(width / 2, height / 2);

int hours = 12;
// 每个小时的角度部分(360/12 = 30 度),但以弧度表示
float angleIncrement = TWO_PI / hours;
// 距中心的距离
float radius = 100;
for (int i = 0; i < hours; i++) {
  // 计算每个小时的角度,减去一些角度,因为角度 0 指向右侧,而不是顶部(12 点钟)
  // 记住这个偏移量:在绘制时钟指针时可能会有帮助 ;)
  float angle = (angleIncrement * i) - (QUARTER_PI * 4/3);
  // 隔离坐标空间
  pushMatrix();
    // 以全局中心为基准,按照每小时的角度旋转
    rotate(angle);
    // 从局部旋转后的中心位置平移,基于半径
    translate(radius, 0);
    // 撤销局部旋转,使文本保持水平
    rotate(-angle);
    // 绘制文本
    text(i+1, 0, 0);
  // 退出局部坐标系统,回到全局坐标
  popMatrix();
}

下面是一个带有帮助函数的示例,用于可视化坐标系统:

void setup() {
  // ...(略去部分代码,与上面的示例相似)
}

void drawCoordinateSystem(String label, float size, float alpha) {
  // ...(略去部分代码,与上面的示例相似)
}

请注意,对于 pushMatrix()/popMatrix(),不需要缩进,这只是一种视觉提示,有助于在阅读代码时记住坐标系统的嵌套。

这部分以下的代码是一些过于复杂的演示,您可能不需要,但希望它能够提供一些有趣的可视化效果。

注:此处省略了一些代码,仅返回翻译内容。

英文:

Without seeing the code my hunch is you use rotate(), but probably you don't use pushMatrix()/popMatrix(); to isolate the coordinate space to local one that can be temporarily rotated.

I recommend reading the 2D Transformations tutorial

旋转文本并不改变文本在处理中的位置。

As the tutorial mentions, the order of transformations matters:

size(300, 300);
background(0);
stroke(255);
// center align text
textAlign(CENTER);
// global translation to center
translate(width / 2, height / 2);

int hours = 12;
// an angle section (360/12 = 30 degrees), but in radians
float angleIncrement = TWO_PI / hours;
// distance from center
float radius = 100;
for(int i = 0 ; i &lt; hours; i++){
  // calculate the angle for each hour, subtracting a bit because angle 0 points to the right, not top (12 o&#39;clock)
  // remember this offset: it may come in handy when drawing clock handles ;)
  float angle = (angleIncrement * i) - (QUARTER_PI * 4/3);
  // isolate coordinate space
  pushMatrix();
    // rotate from global center by each hour angle
    rotate(angle);
    // translate from locally rotated center based on radius 
    translate(radius, 0);
    // undo local rotation so text is straight
    rotate(-angle);
    // render text
    text(i+1,0,0);
  // exit local coordinate system, back to global coordinates after this
  popMatrix();
}

Here is the same example with a helper function to help visualise the coordinate systems:

void setup() {
  size(300, 300);
  background(0);
  stroke(255);
  // center align text
  textAlign(CENTER);
  drawCoordinateSystem(&quot;1.original cooordinates&quot;,60, 255);
  // global translation to center
  translate(width / 2, height / 2);
  drawCoordinateSystem(&quot;2.global center&quot;,60, 64);
  

  int hours = 12;
  // an angle section (360/12 = 30 degrees), but in radians
  float angleIncrement = TWO_PI / hours;
  // distance from center
  float radius = 100;
  for (int i = 0; i &lt; hours; i++) {
    // calculate the angle for each hour, subtracting a bit because angle 0 points to the right, not top (12 o&#39;clock)
    // remember this offset: it may come in handy when drawing clock handles ;)
    float angle = (angleIncrement * i) - (QUARTER_PI * 4/3);
    // isolate coordinate space
    pushMatrix();
      // rotate from global center by each hour angle
      rotate(angle);
      if(i == 0){
        drawCoordinateSystem(&quot;3.local+rotation&quot;,60, 127);
      }
      // translate from locally rotated center based on radius 
      translate(radius, 0);
      if(i == 0){
        drawCoordinateSystem(&quot;4.local+rot.+\ntrans.&quot;,60, 192);
      }
      // undo local rotation so text is straight
      rotate(-angle);
      if(i == 0){
        drawCoordinateSystem(&quot;\n5.prev.\n-rot.&quot;,60, 255);
      }
      // render text
      text(i+1, 0, 0);
    // exit local coordinate system, back to global coordinates after this
    popMatrix();
  }
}

void drawCoordinateSystem(String label, float size, float alpha){
  pushStyle();
  textAlign(LEFT);
  strokeWeight(3);
  // x axis
  stroke(192, 0, 0, alpha);
  line(0, 0, size, 0);
  // y axis
  stroke(0, 192, 0, alpha);
  line(0, 0, 0, size);
  text(label, 10, 15);
  popStyle();
}

旋转文本并不改变文本在处理中的位置。

Note that the indent is not required for pushMatrix()/popMatrix(), it's more of a visual cue to aid when you read code to remember coordinate system nesting.

This is over the top and you won't need the code bellow, but hopefully it's a fun visualisation:

PImage screenshot;

String[] labels = {&quot;1.original cooordinates&quot;,&quot;2.global center\ntranslate(width / 2, height / 2)&quot;,
                   &quot;3.local+rotation\npushMatrix();\nrotate(angle)&quot;,
                   &quot;4.local+rot.+\ntrans.\ntranslate(radius, 0)&quot;,&quot;5.previous-rot.\nrotate(-angle)&quot;,&quot;&quot;};
PMatrix2D[] systems = new PMatrix2D[labels.length];
PMatrix2D lerpMatrix = new PMatrix2D();

void setup() {
  size(300, 300);
  background(0);
  stroke(255);
  // center align text
  textAlign(CENTER);
  // &quot;1.original cooordinates&quot;
  systems[0] = new PMatrix2D();
  // global translation to center
  translate(width / 2, height / 2);
  // &quot;2.global center&quot;
  systems[1] = systems[0].get();
  systems[1].translate(width / 2, height / 2);
  

  int hours = 12;
  // an angle section (360/12 = 30 degrees), but in radians
  float angleIncrement = TWO_PI / hours;
  // distance from center
  float radius = 100;
  for (int i = 0; i &lt; hours; i++) {
    // calculate the angle for each hour, subtracting a bit because angle 0 points to the right, not top (12 o&#39;clock)
    // remember this offset: it may come in handy when drawing clock handles ;)
    float angle = (angleIncrement * i) - (QUARTER_PI * 4/3);
    // isolate coordinate space
    pushMatrix();
      // rotate from global center by each hour angle
      rotate(angle);
      if(i == 0){
        // &quot;3.local+rotation&quot;
        PMatrix2D local = new PMatrix2D();
        local.apply(systems[1]);
        local.rotate(angle);
        systems[2] = local.get();
      }
      // translate from locally rotated center based on radius 
      translate(radius, 0);
      if(i == 0){
        // &quot;4.local+rot.+\ntrans.&quot;
        systems[3] = systems[2].get();
        systems[3].translate(radius,0);
      }
      // undo local rotation so text is straight
      rotate(-angle);
      if(i == 0){
        // &quot;\n5.prev.\n-rot.&quot;
        systems[4] = systems[3].get();
        systems[4].rotate(-angle);
        systems[5] = systems[4];
      }
      // render text
      text(i+1, 0, 0);
    // exit local coordinate system, back to global coordinates after this
    popMatrix();
  }
  screenshot = get();
}

void draw(){
  image(screenshot,0, 0);
  animateCoordinateSystems();
  text(&quot;mouse mouse on X axis&quot;, width / 2, height - 12);
}

void animateCoordinateSystems(){
  float mapping = map(constrain(mouseX, 0, width), 0, width, 0.0, 1.0);
  float globalT = (float)(labels.length -1) * mapping;
  int index = (int)globalT;
  float localT = globalT - index;
  lerpMatrix(systems[index], systems[index+1], localT, lerpMatrix);
  pushMatrix();
  applyMatrix(lerpMatrix);
  drawCoordinateSystem(labels[index] + (labels[index+1].length() &gt; 0 ? &quot;\ntransitions to\n&quot; + labels[index+1] : &quot;&quot;),60, 255);
  popMatrix();  
}

void lerpMatrix(PMatrix2D from, PMatrix2D to, float t, PMatrix2D result){
  result.m00 = lerp(from.m00, to.m00, t);
  result.m01 = lerp(from.m01, to.m01, t);
  result.m02 = lerp(from.m02, to.m02, t);
  result.m10 = lerp(from.m10, to.m10, t);
  result.m11 = lerp(from.m11, to.m11, t);
  result.m12 = lerp(from.m12, to.m12, t);
}


void drawCoordinateSystem(String label, float size, float alpha){
  pushStyle();
  textAlign(LEFT);
  strokeWeight(3);
  // x axis
  stroke(192, 0, 0, alpha);
  line(0, 0, size, 0);
  // y axis
  stroke(0, 192, 0, alpha);
  line(0, 0, 0, size);
  text(label, 10, 15);
  popStyle();
}

旋转文本并不改变文本在处理中的位置。

huangapple
  • 本文由 发表于 2020年9月24日 04:09:38
  • 转载请务必保留本文链接:https://go.coder-hub.com/64035544.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定