Pascal三角形整数溢出:在第30行需要查找值时。

huangapple go评论138阅读模式
英文:

Pascal Triangle Integer Overflow when values need to be find at row 30

问题

这是整数溢出问题,但我无法理解如何仅使用整数解决它,而不使用长整数。我想知道在溢出发生时如何测试或形成方程,而不转向更高的数据类型。

目标:尝试找到帕斯卡三角形中第i个索引的值;

rowIndex 可以最大为33。

class Solution {
    public List<Integer> getRow(int rowIndex) {
        
        List<Integer> pt = new ArrayList<>();
        
        int prev = 1;
        int curr = 1;
        int n = rowIndex + 1;
        pt.add(prev);
        
        for (int i = 1; i <= rowIndex; i++) {    
            
            curr = prev * (n - i) / i;
            
            pt.add(curr);
            
            prev = curr;
        }
        return pt;
    }
}
英文:

This is Integer overflow problem but i am not able to wrap my head around it for using only Integer for solution [not using long ].
I want to know how can we test or form equation when overflow happens without moving to higher datatype?

Aim : try to find pascal triangle values at i index ;

rowIndex can be max 33.

Code:

class Solution {
    public List&lt;Integer&gt; getRow(int rowIndex) {
        
        List&lt;Integer&gt; pt = new ArrayList&lt;&gt;();
        
        int prev=1;
        int curr=1;
        int n=rowIndex+1;
        pt.add(prev);
        
        for (int i=1; i &lt;= rowIndex; i++) {    
            
            curr = prev * (n-i)/i;
            
            pt.add(curr);
            
            prev=curr;
        }
        return pt;
        
    }

答案1

得分: 1

你可以通过使用long而不是int来防止溢出。

public List<Integer> getRow(int rowIndex) {
    
    List<Integer> pt = new ArrayList<>();
    
    int prev = 1;
    int curr = 1;
    int n = rowIndex + 1;
    pt.add(prev);
    
    for (int i = 1; i <= rowIndex; i++) {    
        
        curr = (int) ((long) prev * (n - i) / i);
        
        pt.add(curr);
        
        prev = curr;
    }
    return pt;
}

但是,可以在不使用long的情况下解决这个问题。prev * (n - i) 部分可能会溢出,但这个乘积应该能被i整除。您可以通过在乘法之前进行除法来避免溢出。如果提前计算(n - i)i的最大公约数 (GCD),则可以按以下方式重写。

int gcd = gcd(n - i, i);
curr = (prev / (i / gcd)) * ((n - i) / gcd);

GCD可以通过以下方法获得。

static int gcd(int m, int n) {
    while (n > 0) {
        int r = m % n;
        m = n;
        n = r;
    }
    return m;
}

在之前:

[1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150, 30045015, 54627300, 86493225, 119759850, 145422675, -131213633, -123012780, -101304642, -73164463, -46209134, -25415023, -12102391, -4950978, -1722079, -502273, -120545, -23181, -3434, -367, -25, 0]

之后:

[1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150, 30045015, 54627300, 86493225, 119759850, 145422675, 155117520, 145422675, 119759850, 86493225, 54627300, 30045015, 14307150, 5852925, 2035800, 593775, 142506, 27405, 4060, 435, 30, 1]
英文:

You can prevent overflow by using long instead of int.

public List&lt;Integer&gt; getRow(int rowIndex) {
    
    List&lt;Integer&gt; pt = new ArrayList&lt;&gt;();
    
    int prev=1;
    int curr=1;
    int n=rowIndex+1;
    pt.add(prev);
    
    for (int i=1; i &lt;= rowIndex; i++) {    
        
        curr = (int) ((long) prev * (n-i)/i);
        
        pt.add(curr);
        
        prev=curr;
    }
    return pt;
    
}

But the problem can be solved without using long.
The prev * (n-i) part may overflow, but this product should be divisible by i. You can avoid the overflow by dividing before the multiplication. If you calculate GCD of (n-i) and i in advance, you can rewrite as follows.

        int gcd = gcd(n - i, i);
        curr = (prev / (i / gcd)) * ((n - i) / gcd);

GCD can be obtained by the following method.

static int gcd(int m, int n) {
    while (n &gt; 0) {
        int r = m % n;
        m = n;
        n = r;
    }
    return m;
}

before:

[1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150, 30045015, 54627300, 86493225, 119759850, 145422675, -131213633, -123012780, -101304642, -73164463, -46209134, -25415023, -12102391, -4950978, -1722079, -502273, -120545, -23181, -3434, -367, -25, 0]

after:

[1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150, 30045015, 54627300, 86493225, 119759850, 145422675, 155117520, 145422675, 119759850, 86493225, 54627300, 30045015, 14307150, 5852925, 2035800, 593775, 142506, 27405, 4060, 435, 30, 1]

huangapple
  • 本文由 发表于 2020年8月12日 17:51:16
  • 转载请务必保留本文链接:https://go.coder-hub.com/63374037.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定