按照标识重新排列,并保持其他变量不变。

huangapple go评论109阅读模式
英文:

Reshape by id and keep other variables fixed

问题

我试图做的是重新排列数据,其中数据在列中,但其余变量保持不变。

我需要的结果是这样的:

ID Location Gender TypeofHome MS.2007 MS.2008 MS.2009 MS.2010 MWC.2007 MWC.2008 MWC.2009 MWC.2010
1 EEUU M House 1500 3900 0 NA 400 0 100 NA
2 Germany F Department 0 4000 700 0 1000 500 0 50

哪一个是更好的解决方案?谢谢!

英文:

What I'm trying to do is reorder the data where the data is in columns, but the rest of the variables are maintained

  1. c1<- c("ID","Location", "Year","Gender", "MoneySpent", "MoneyWithCreditCard")
  2. c2<- c(1,"EEUU",2007,"M",1500,400)
  3. c3<- c(1,"EEUU",2008,"M",3900,0)
  4. c4<- c(1,"EEUU",2009,"M",0,100)
  5. c5<- c(2,"Germany",2007,"F",0,1000)
  6. c6<- c(2,"Germany",2008,"F",4000,500)
  7. c7<- c(2,"Germany",2009,"F",700,0)
  8. c8<- c(2,"Germany",2010,"F",0,50)
  9. Df<-data.frame(rbind(c2,c3,c4,c5,c6,c7,c8))
  10. colnames(Df)<-c1
  11. # ID Location Year Gender MoneySpent MoneyWithCreditCard TypeofHome
  12. #c2 1 EEUU 2007 M 1500 400 House
  13. #c3 1 EEUU 2008 M 3900 0 House
  14. #c4 1 EEUU 2009 M 0 100 House
  15. #c5 2 Germany 2007 F 0 1000 Department
  16. #c6 2 Germany 2008 F 4000 500 Department
  17. #c7 2 Germany 2009 F 700 0 Department
  18. #c8 2 Germany 2010 F 0 50 Department

The result I need is this one:

  1. # ID Location Gender TypeofHome MS.2007 MS.2008 MS.2009 MS.2010 MWC.2007 MWC.2008 MWC.2009 MWC.2010
  2. # 1 EEUU M House 1500 3900 0 NA 400 0 100 NA
  3. # 2 Germany F Department 0 4000 700 0 1000 500 0 50

Which one is the better solution? Thanks btw!

答案1

得分: 4

这将重新命名原始数据中的列,因此只需要进行一次数据透视:

  1. library(dplyr)
  2. library(tidyr)
  3. Df %>%
  4. rename(MS = MoneySpent, MWC = CreditCard) %>%
  5. pivot_wider(names_from = c("Year"),
  6. values_from = c("MS", "MWC"))
  7. # # A tibble: 2 x 11
  8. # ID Location Gender MS_2007 MS_2008 MS_2009 MS_2010 MWC_2007 MWC_2008 MWC_2009 MWC_2010
  9. # <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct>
  10. # 1 1 EEUU M 1500 3900 0 NA 400 0 100 NA
  11. # 2 2 Germany F 0 4000 700 0 1000 500 0 50

请注意,我已经将代码部分保留为原文,只翻译了代码之外的文本。

英文:

This renames the columns in the original data so only a single pivot is needed:

  1. library(dplyr)
  2. library(tidyr)
  3. Df %&gt;%
  4. rename(MS = MoneySpent, MWC = CreditCard) %&gt;%
  5. pivot_wider(names_from = c(&quot;Year&quot;),
  6. values_from = c(&quot;MS&quot;, &quot;MWC&quot;))
  7. # # A tibble: 2 x 11
  8. # ID Location Gender MS_2007 MS_2008 MS_2009 MS_2010 MWC_2007 MWC_2008 MWC_2009 MWC_2010
  9. # &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt; &lt;fct&gt;
  10. # 1 1 EEUU M 1500 3900 0 NA 400 0 100 NA
  11. # 2 2 Germany F 0 4000 700 0 1000 500 0 50

答案2

得分: 3

这是使用 pivot_longerpivot_wider 的选项。我们首先使用 pivot_longer 在 'Money' 列上将数据变成'长'格式,根据列名添加 'MC' 或 'MWC' 来更改 'Year',然后使用 pivot_wider 将数据变成'宽'格式。

  1. library(dplyr)
  2. library(tidyr)
  3. library(stringr)
  4. Df %>%
  5. pivot_longer(cols = starts_with("Money")) %>%
  6. mutate(Year = case_when(name == "MoneySpent" ~ str_c("MS.", Year),
  7. TRUE ~ str_c("MWC.", Year))) %>%
  8. select(-name) %>%
  9. pivot_wider(names_from = Year, values_from = value)
  10. # ID Location Gender TypeofHome MS.2007 MWC.2007 MS.2008 MWC.2008 MS.2009 MWC.2009 MS.2010 MWC.2010
  11. # 1 1 EEUU M House 1500 400 3900 0 0 100 NA NA
  12. # 2 2 Germany F Department 0 1000 4000 500 700 0 0 50

或者使用 rename_at

  1. Df %>%
  2. rename_at(vars(matches("Money")), ~ str_remove_all(., "[a-z]+")) %>%
  3. pivot_wider(names_from = Year, values_from = starts_with("M"))
  4. # ID Location Gender MS_2007 MS_2008 MS_2009 MS_2010 MWCC_2007 MWCC_2008 MWCC_2009 MWCC_2010
  5. # 1 1 EEUU M 1500 3900 0 NA 400 0 100 NA
  6. # 2 2 Germany F 0 4000 700 0 1000 500 0 50
英文:

Here is an option with pivot_longer and pivot_wider. We first reshape to 'long' format with pivot_longer on the 'Money' columns, change the 'Year' by appending 'MC' or 'MWC' based on the column names, and do a pivot_wider to 'wide' format

  1. library(dplyr)
  2. library(tidyr)
  3. library(stringr)
  4. Df %&gt;%
  5. pivot_longer(cols = starts_with(&quot;Money&quot;)) %&gt;%
  6. mutate(Year = case_when(name == &quot;MoneySpent&quot; ~ str_c(&quot;MS.&quot;, Year),
  7. TRUE ~ str_c(&quot;MWC.&quot;, Year))) %&gt;%
  8. select(-name) %&gt;%
  9. pivot_wider(names_from = Year, values_from = value)
  10. #ID Location Gender TypeofHome MS.2007 MWC.2007 MS.2008 MWC.2008 MS.2009 MWC.2009 MS.2010 MWC.2010
  11. #1 1 EEUU M House 1500 400 3900 0 0 100 NA NA
  12. #2 2 Germany F Department 0 1000 4000 500 700 0 0 50

Or using rename_at

  1. Df %&gt;%
  2. rename_at(vars(matches(&quot;Money&quot;)), ~ str_remove_all(., &quot;[a-z]+&quot;)) %&gt;%
  3. pivot_wider(names_from = Year, values_from = starts_with(&quot;M&quot;))
  4. # ID Location Gender MS_2007 MS_2008 MS_2009 MS_2010 MWCC_2007 MWCC_2008 MWCC_2009 MWCC_2010
  5. #1 1 EEUU M 1500 3900 0 &lt;NA&gt; 400 0 100 &lt;NA&gt;
  6. #2 2 Germany F 0 4000 700 0 1000 500 0 50

答案3

得分: 1

你可以尝试使用基本的R函数reshape

  1. reshape(setNames(Df, c(names(Df)[1:4], "MS", "MWS", "TypeOfHome")),
  2. idvar=c("ID", "Location", "Gender", "TypeOfHome"),
  3. timevar="Year", direction="wide")
  4. # ID Location Gender TypeOfHome MS.2007 MWS.2007 MS.2008 MWS.2008 MS.2009 MWS.2009 MS.2010 MWS.2010
  5. # 1 1 EEUU M House 1500 400 3900 0 0 100 <NA> <NA>
  6. # 4 2 Germany F Appartment 0 1000 4000 500 700 0 0 50
英文:

You may want to try reshape from base R.

  1. reshape(setNames(Df, c(names(Df)[1:4], &quot;MS&quot;, &quot;MWS&quot;, &quot;TypeOfHome&quot;)),
  2. idvar=c(&quot;ID&quot;, &quot;Location&quot;, &quot;Gender&quot;, &quot;TypeOfHome&quot;),
  3. timevar=&quot;Year&quot;, direction=&quot;wide&quot;)
  4. # ID Location Gender TypeOfHome MS.2007 MWS.2007 MS.2008 MWS.2008 MS.2009 MWS.2009 MS.2010 MWS.2010
  5. # 1 1 EEUU M House 1500 400 3900 0 0 100 &lt;NA&gt; &lt;NA&gt;
  6. # 4 2 Germany F Appartment 0 1000 4000 500 700 0 0 50

huangapple
  • 本文由 发表于 2020年1月7日 02:27:07
  • 转载请务必保留本文链接:https://go.coder-hub.com/59617107.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定