英文:
Roulette Wheel Selection in Genetic Algorithm using Golang
问题
我正在为遗传算法构建一个模拟轮盘赌选择函数。首先,我想在主函数中计算fitnessScore的总和sum。在计算完fitnessScore的总和后,我想使用Go语言中的math/rand包从该总和中随机选择一个值。在这种情况下,我应该如何使用rand包?如何修复spin_wheel := rand.sum以随机选择一个值?
package main
import (
	"fmt"
	"time"
	"math/rand"
)
func rouletteWheel(fitnessScore []float64) []float64 {
	sum := 0.0
	for i := 0; i < len(fitnessScore); i++ {
		sum += fitnessScore[i]
	}
	rand.Seed(time.Now().UnixNano())
	spin_wheel := rand.Float64() * sum
	partial_sum := 0.0
	for i := 0; i < len(fitnessScore); i++ {
		partial_sum += fitnessScore[i]
		if partial_sum >= spin_wheel {
			return fitnessScore
		}
	}
	return fitnessScore
}
func main() {
	fitnessScore := []float64{0.1, 0.2, 0.3, 0.4}
	fmt.Println(rouletteWheel(fitnessScore))
}
在这个代码中,你可以使用rand.Float64()函数生成一个0到1之间的随机浮点数,并将其乘以sum来获取一个在0到sum之间的随机值。这样,你就可以使用spin_wheel来进行随机选择了。
英文:
I'm building a mock roulette wheel selection function for genetic algorithm. First of, I would want to add up the sum of the fitnessScore in the main function. After adding up the fitnessScore I wanted to randomize a value out of that sum using the math/rand package in Go. How should I use the rand package in this scenario how do I fix spin_wheel := rand.sum in order to random a value?
package main
import(
	"fmt"
	"time"
	"math/rand"
)
func rouletteWheel(fitnessScore []float64) []float64{
	sum := 0.0
	for i := 0; i < len(fitnessScore); i++ {
		sum += fitnessScore[i]
	}
	
	rand.Seed(time.Now().UnixNano())
	spin_wheel := rand.sum
	partial_sum := 0.0
	for i := 0; i < len(fitnessScore); i++{
		partial_sum += fitnessScore[i]
		if(partial_sum >= spin_wheel){
			return fitnessScore
		}
	}
	return fitnessScore
}
func main(){
	fitnessScore := []float64{0.1, 0.2, 0.3, 0.4}
	fmt.Println(rouletteWheel(fitnessScore))
}
答案1
得分: 1
例如,
package main
import (
    "fmt"
    "math/rand"
    "time"
)
// 根据权重(概率)返回所选的权重
// 适应度比例选择:
// https://en.wikipedia.org/wiki/Fitness_proportionate_selection
func rouletteSelect(weights []float64) float64 {
    // 计算总权重
    sum := 0.0
    for _, weight := range weights {
        sum += weight
    }
    // 获取一个随机值
    value := rand.Float64() * sum
    // 根据权重定位随机值
    for _, weight := range weights {
        value -= weight
        if value <= 0 {
            return weight
        }
    }
    // 仅在出现舍入误差时
    return weights[len(weights)-1]
}
func main() {
    rand.Seed(time.Now().UnixNano())
    weights := []float64{0.1, 0.2, 0.3, 0.4}
    fmt.Println(rouletteSelect(weights))
}
英文:
For example,
package main
import (
	"fmt"
	"math/rand"
	"time"
)
// Returns the selected weight based on the weights(probabilities)
// Fitness proportionate selection:
// https://en.wikipedia.org/wiki/Fitness_proportionate_selection
func rouletteSelect(weights []float64) float64 {
	// calculate the total weights
	sum := 0.0
	for _, weight := range weights {
		sum += weight
	}
	// get a random value
	value := rand.Float64() * sum
	// locate the random value based on the weights
	for _, weight := range weights {
		value -= weight
		if value <= 0 {
			return weight
		}
	}
	// only when rounding errors occur
	return weights[len(weights)-1]
}
func main() {
	rand.Seed(time.Now().UnixNano())
	weights := []float64{0.1, 0.2, 0.3, 0.4}
	fmt.Println(rouletteSelect(weights))
}
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。


评论