英文:
what is the golang equivalent of a Java synchronized() block?
问题
Java提供了一种非常方便的习语来同步代码的关键部分:
synchronized(someObject) {
// 独自完成一些非常重要的事情,没有人打扰我
}
或者
public synchronized void doSomething() {
// ...
}
Go语言的等效方式是什么?
(快速搜索结果显示:<a href="http://golang.org/pkg/sync/">golang.org/pkg/sync/</a> - 这似乎(也许我错了)对于一般用途来说有点太底层。)
(为什么我关心这个的例子:我需要通过通道向多个监听器发送消息。通道为数据提供了一个良好的传输通道,而无需同步任何内容,但是当通道被添加或删除时,我需要修改通道列表,这可能随时发生,必须能够处理并发。)
英文:
Java provides a very convenient idiom for synchronizing critical portions of code:
synchronized(someObject) {
// do something really important all by myself with nobody bothering me
}
Or
public synchronized void doSomething() {
// ...
}
What is the go equivalent?
(A quick search reveals: <a href="http://golang.org/pkg/sync/">golang.org/pkg/sync/</a> - which seems (maybe I'm wrong) a bit too low level for general use.)
(Example of why I care about this: I need to send a message to multiple listeners via channels. Channels provide a good conduit for the data without having to synchronize anything, but when channels are added or removed I need to modify the list of channels, which might happen at any time must be able to deal with concurrency.)
答案1
得分: 22
sync.Mutex 是一种互斥锁,它可以提供类似于 Java 中的 synchronized
关键字的功能(除了 Java 中的锁提供了可重入的互斥)。
synchronized(someObject) {
//
}
等价于:
var l sync.Mutex
l.Lock()
//
l.Unlock()
英文:
sync.Mutex is a mutual exclusion lock, it can provide a similar functionality to the synchronized
java key-word (except that locks in java provide reentrant
mutual exclusion) :
synchronized(someObject) {
//
}
Is equivalent to :
var l sync.Mutex
l.Lock()
//
l.Unlock()
答案2
得分: 16
扩展tarrsalah的答案。
您可以将sync.Mutex添加到您的对象中,以便可以直接对其进行锁定和解锁。
type MyObject struct{
Number int
sync.Mutex
}
func (m *MyObject)Increment(){
m.Lock()
defer m.Unlock()
m.Number++
}
延迟的命令将在函数末尾运行,这样您就知道它既被锁定又被解锁,在更大的函数中也适用。
英文:
to extend off tarrsalah's answer.
You can add sync.Mutex to your object, allowing them to be directly locked and unlocked.
type MyObject struct{
Number int
sync.Mutex
}
func (m *MyObject)Increment(){
m.Lock()
defer m.Unlock()
m.Number++
}
Defer'd commands will run at the end of the function, this way you know it gets both locked and unlocked, in bigger functions.
答案3
得分: 9
使用互斥锁的另一种解决方案是使用通道来进行监听器的通信。
以下是一个完整的示例,代码的重点在于FanOuter函数。
package main
import (
"fmt"
"time"
)
type Message int
type ListenerUpdate struct {
Add bool
Listener chan Message
}
// FanOuter维护监听器,并将来自msgc的消息转发给每个监听器。listc上的更新可以添加或删除监听器。
func FanOuter(msgc chan Message, listc chan ListenerUpdate) {
lstrs := map[chan Message]struct{}{}
for {
select {
case m := <-msgc:
for k := range lstrs {
k <- m
}
case lup := <-listc:
if lup.Add {
lstrs[lup.Listener] = struct{}{}
} else {
delete(lstrs, lup.Listener)
}
}
}
}
func main() {
msgc := make(chan Message)
listc := make(chan ListenerUpdate)
go FanOuter(msgc, listc)
// 慢慢添加监听器,然后慢慢删除它们。
go func() {
chans := make([]chan Message, 10)
// 添加监听器。
for i := range chans {
chans[i] = make(chan Message)
// 监听器打印其ID和接收到的任何消息。
go func(i int, c chan Message) {
for {
m := <-c
fmt.Printf("%d received %d\n", i, m)
}
}(i, chans[i])
listc <- ListenerUpdate{true, chans[i]}
time.Sleep(300 * time.Millisecond)
}
// 删除监听器。
for i := range chans {
listc <- ListenerUpdate{false, chans[i]}
time.Sleep(300 * time.Millisecond)
}
}()
// 每秒向fanouter发送一条消息。
for i := 0; i < 10; i++ {
fmt.Println("About to send ", i)
msgc <- Message(i)
time.Sleep(1 * time.Second)
}
}
希望对你有帮助!
英文:
A different solution to using a mutex is to use a channel to communicate listener changes.
A full example in this style looks like this. The interesting code is in FanOuter.
package main
import (
"fmt"
"time"
)
type Message int
type ListenerUpdate struct {
Add bool
Listener chan Message
}
// FanOuter maintains listeners, and forwards messages from msgc
// to each of them. Updates on listc can add or remove a listener.
func FanOuter(msgc chan Message, listc chan ListenerUpdate) {
lstrs := map[chan Message]struct{}{}
for {
select {
case m := <-msgc:
for k := range lstrs {
k <- m
}
case lup := <-listc:
if lup.Add {
lstrs[lup.Listener] = struct{}{}
} else {
delete(lstrs, lup.Listener)
}
}
}
}
func main() {
msgc := make(chan Message)
listc := make(chan ListenerUpdate)
go FanOuter(msgc, listc)
// Slowly add listeners, then slowly remove them.
go func() {
chans := make([]chan Message, 10)
// Adding listeners.
for i := range chans {
chans[i] = make(chan Message)
// A listener prints its id and any messages received.
go func(i int, c chan Message) {
for {
m := <-c
fmt.Printf("%d received %d\n", i, m)
}
}(i, chans[i])
listc <- ListenerUpdate{true, chans[i]}
time.Sleep(300 * time.Millisecond)
}
// Removing listeners.
for i := range chans {
listc <- ListenerUpdate{false, chans[i]}
time.Sleep(300 * time.Millisecond)
}
}()
// Every second send a message to the fanouter.
for i := 0; i < 10; i++ {
fmt.Println("About to send ", i)
msgc <- Message(i)
time.Sleep(1 * time.Second)
}
}
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论