英文:
Creating a for loop using list of specific pairs of columns
问题
I have a large data frame with many columns. I am trying to write a for loop that will do a couple of simple calculations between columns, but the columns must be specific, and I am identifying them based on location in the data frame. For example, I want to do the calculation between Column 8 and Column 1, between Column 8 and Column 7, etc.
What is the best way to create a list of the operations to be done, and call upon that list in a for loop?
I have this so far (just doing the operation manually, repeating a lot of code):
import numpy as np
import pandas as pd
data = [[99,3,12,4,63,55,67,32,15,102,87,34,82,102,99,30,99,1]]
cols_m = pd.MultiIndex.from_product([['1. FY21','2. FY22','3. FY23','4. FY24','5. FY25','6. FY26','7. FY27','8. FY28','9. FY29'],['Values','Sites']])
df = pd.DataFrame(data, columns = cols_m)
cols = df.columns.get_level_values(0).unique()
first_col = df.xs(cols[1], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({"{}-{}".format(cols[8], cols[1]): d}, axis=1)
e = pd.concat({"{}-{} %Change".format(cols[8], cols[1]): e}, axis=1)
df = pd.concat([df, d, e], axis=1)
del first_col, second_col, d, e
first_col = df.xs(cols[7], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({"{}-{}".format(cols[8], cols[7]): d}, axis=1)
e = pd.concat({"{}-{} %Change".format(cols[8], cols[7]): e}, axis=1)
df = pd.concat([df, d, e], axis=1)
and on and on, with different columns inserted...
I would ideally like to have something like below (same output), but I am not sure how to create the list:
my_list = [(8, 1), (8, 7)] #etc. etc.
all_dfs = []
for i, j in my_list:
first_col = df.xs(cols[i], level=0, axis=1)
second_col = df.xs(cols[j], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({"{}-{}".format(cols[j], cols[i]): d}, axis=1)
e = pd.concat({"{}-{} %Change".format(cols[j], cols[i]): e}, axis=1)
df = pd.concat([df, d, e], axis=1)
英文:
I have a large data frame with many columns. I am trying to write a for loop that will do a couple of simple calculations between columns, but the columns must be specific, and I am identifying them based on location in the data frame. For example, I want to do the calculation between Column 8 and Column 1, between Column 8 and Column 7, etc.
What is the best way to create a list of the operations to be done, and call upon that list in a for loop?
I have this so far (just doing the operation manually, repeating a lot of code):
import numpy as np
import pandas as pd
data = [[99,3,12,4,63,55,67,32,15,102,87,34,82,102,99,30,99,1]]
cols_m = pd.MultiIndex.from_product([['1. FY21','2. FY22','3. FY23','4. FY24','5. FY25','6. FY26','7. FY27','8. FY28','9. FY29'],['Values','Sites']])
df = pd.DataFrame(data, columns = cols_m)
cols = df.columns.get_level_values(0).unique()
first_col = df.xs(cols[1], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[8]}-{cols[1]}": d}, axis=1)
e = pd.concat({f"{cols[8]}-{cols[1]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
del first_col, second_col, d, e
first_col = df.xs(cols[7], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[8]}-{cols[7]}": d}, axis=1)
e = pd.concat({f"{cols[8]}-{cols[7]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
and on and on, with different columns inserted...
I would ideally like to have something like below (same output), but I am not sure how to create the list:
list = {col[8] - col[1], col[8] - col[7]} #etc. etc.
all_dfs = []
for i, j in list:
first_col = df.xs(cols[i], level=0, axis=1)
second_col = df.xs(cols[j], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[j]}-{cols[i]}": d}, axis=1)
e = pd.concat({f"{cols[j]}-{cols[i]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
答案1
得分: 1
以下是翻译好的部分:
可以使用元组列表:
```python
pairs = [(8, 1), (8, 7)]
l = [df]
for i, j in pairs:
first_col = df.xs(cols[j], level=0, axis=1)
second_col = df.xs(cols[i], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
l.append(pd.concat({f"{cols[i]}-{cols[j]}": d,
f"{cols[i]}-{cols[j]} %Change": e},
axis=1)
)
out = pd.concat(l, axis=1)
输出:
1. FY21 2. FY22 3. FY23 4. FY24 5. FY25 6. FY26 7. FY27 8. FY28 9. FY29 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-8. FY28 9. FY29-8. FY28 %Change
Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites
0 99 3 12 4 63 55 67 32 15 102 87 34 82 102 99 30 99 1 87 -3 725.0 -75.0 87 -3 725.0 -75.0 0 -29 0.0 -96.666667
<details>
<summary>英文:</summary>
You can use a list of tuples:
pairs = [(8, 1), (8, 7)]
l = [df]
for i, j in pairs:
first_col = df.xs(cols[j], level=0, axis=1)
second_col = df.xs(cols[i], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
l.append(pd.concat({f"{cols[i]}-{cols[j]}": d,
f"{cols[i]}-{cols[j]} %Change": e},
axis=1)
)
out = pd.concat(l, axis=1)
Output:
- FY21 2. FY22 3. FY23 4. FY24 5. FY25 6. FY26 7. FY27 8. FY28 9. FY29 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-8. FY28 9. FY29-8. FY28 %Change
Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites
0 99 3 12 4 63 55 67 32 15 102 87 34 82 102 99 30 99 1 87 -3 725.0 -75.0 87 -3 725.0 -75.0 0 -29 0.0 -96.666667
</details>
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论