英文:
An example of how pytorch clip_grad_norm_ works
问题
I'd like a simple example to illustrate how gradient clipping via clip_grad_norm_ works. From this post, I found that if the norm of a gradient is greater than a threshold, then it simply takes the unit vector of the gradient and multiplies it with the threshold. That's what I tried
v = torch.rand(5)*1000
v_1 = v.clone()
torch.nn.utils.clip_grad_norm_(v_1, max_norm=1.0, norm_type=2)
print(v, v_1)
(tensor([381.2621, 935.3613, 664.9132, 840.0740, 443.0156]),
tensor([381.2621, 935.3613, 664.9132, 840.0740, 443.0156]))
I'd have thought it would do v/torch.norm(v, p=2) * 2
which should give me tensor([0.2480, 0.6083, 0.4324, 0.5463, 0.2881])
It doesn't seem to do anything. I thought the max_norm was the threshold value (the pytorch documentation wasn't very clear on this. This post wasn't too helpful either.
英文:
I'd like a simple example to illustrate how gradient clipping via clip_grad_norm_ works. From this post, I found that if the norm of a gradient is greater than a threshold, then it simply takes the unit vector of the gradient and multiplies it with with threshold. That's what I tried
v = torch.rand(5)*1000
v_1 = v.clone()
torch.nn.utils.clip_grad_norm_(v_1, max_norm=1.0, norm_type=2)
print(v, v_1)
(tensor([381.2621, 935.3613, 664.9132, 840.0740, 443.0156]),
tensor([381.2621, 935.3613, 664.9132, 840.0740, 443.0156]))
I'd have thought it would do v/torch.norm(v, p=2) * 2
which should give me tensor([0.2480, 0.6083, 0.4324, 0.5463, 0.2881])
It doesn't seem to do anything. I thought the max_norm was the threshold value (the pytorch documentation wasn't very clear on this. This post wasn't too helpful either.
答案1
得分: 1
这是因为torch.nn.utils.clip_grad_norm
剪裁梯度值(通过Tensor.grad
访问),而不是值本身。以下是使用的快速示例:
v = torch.rand(5) * 1000
v_1 = v.clone()
v.requires_grad_(True)
v_1.requires_grad_(True)
loss = 1/2 * torch.sum(v_1 * v_1 + v * v)
# 这里损失相对于v和v_1的梯度应分别为v和v_1
loss.backward()
# 剪裁v_1的梯度
torch.nn.utils.clip_grad_norm_(v_1, max_norm=1.0, norm_type=2)
print(v.grad)
print(v_1.grad)
print(v.grad / torch.norm(v.grad, p=2))
结果为:
tensor([486.8801, 481.7880, 172.6818, 659.4149, 62.8158]) # 未剪裁
tensor([0.5028, 0.4975, 0.1783, 0.6809, 0.0649]) # 剪裁后!
tensor([0.5028, 0.4975, 0.1783, 0.6809, 0.0649]) # 相同的值
英文:
It is because torch.nn.utils.clip_grad_norm
clips the gradients values (accessed via Tensor.grad
) and not the values themselves. Quick example of use:
v = torch.rand(5) * 1000
v_1 = v.clone()
v.requires_grad_(True)
v_1.requires_grad_(True)
loss = 1/2 * torch.sum(v_1 * v_1 + v * v)
# Here grads of loss w.r.t v and v_1 should be v and v_1 respectively
loss.backward()
# Clip grads of v_1
torch.nn.utils.clip_grad_norm_(v_1, max_norm=1.0, norm_type=2)
print(v.grad)
print(v_1.grad)
print(v.grad / torch.norm(v.grad, p=2))
Results in:
tensor([486.8801, 481.7880, 172.6818, 659.4149, 62.8158]) # no clipped
tensor([0.5028, 0.4975, 0.1783, 0.6809, 0.0649]) # clipped!
tensor([0.5028, 0.4975, 0.1783, 0.6809, 0.0649]) # same values
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论