弹性张量的种群

huangapple go评论69阅读模式
英文:

population of elasticity tensor

问题

我试图创建一个用于填充张量的代码,该张量应该具有36个独立的分量和对称性 C[i,j,k,l] = C[j,i,k,l] = C[i,j,l,k]

我正在进行以下操作:

C = sym.MutableDenseNDimArray.zeros(3,3,3,3)
var = sym.symbols('C1:%d'%82)

ct = 0
for i in range(3):
    for j in range(3):
        for k in range(3):
            for l in range(3):
                if C[i,j,k,l] == 0:
                    C[i,j,k,l] = var[ct]
                    C[j,i,k,l] = var[ct]
                    C[i,j,l,k] = var[ct]
                    ct += 1

这给我提供了45个不同的条目。我做错了什么?

英文:

I am trying to create a code to populate a tensor with the symmetries of an elasticity tensor which should have 36 independent components and the symmetries C[i,j,k,l] = C[j,i,k,l] = C[i,j,l,k].

I am doing:

C = sym.MutableDenseNDimArray.zeros(3,3,3,3)
var = sym.symbols('C1:%d'%82)

ct = 0
for i in range(3):
    for j in range(3):
        for k in range(3):
            for l in range(3):
                if C[i,j,k,l] == 0:
                    C[i,j,k,l] = var[ct]
                    C[j,i,k,l] = var[ct]
                    C[i,j,l,k] = var[ct]
                    ct += 1

This is giving me 45 different entries. What am I doing wrong?

答案1

得分: 1

你似乎缺少对称性。如果你提到的两个对称性成立:

C[i,j,k,l] = C[j,i,k,l](对称性1)
C[i,j,k,l] = C[i,j,l,k](对称性2)

这意味着对每个元素都成立:

C[a,b,c,d] = C[b,a,c,d](对称性1)
C[b,a,c,d] = C[b,a,d,c](对称性2)

因此:

C[a,b,c,d] = C[b,a,d,c]
C[i,j,k,l] = C[j,i,l,k](隐含的对称性)

如果你在你的代码中包含这部分,你将得到:

C = sym.MutableDenseNDimArray.zeros(3,3,3,3)
var = sym.symbols('C1:%d' % 82)

ct = 0
for i in range(3):
    for j in range(3):
        for k in range(3):
            for l in range(3):
                if C[i,j,k,l] == 0:
                    C[i,j,k,l] = var[ct]
                    C[j,i,k,l] = var[ct]
                    C[i,j,l,k] = var[ct]
                    C[j,i,l,k] = var[ct]
                    ct += 1

这将给你36个不同的条目。

英文:

You seem to be missing a symmetry. If the 2 symmetries you mentioned:

C[i,j,k,l] = C[j,i,k,l] (symmetry 1)
C[i,j,k,l] = C[i,j,l,k] (symmetry 2)

hold for every element that means that:

C[a,b,c,d] = C[b,a,c,d] (symmetry 1)
C[b,a,c,d] = C[b,a,d,c] (symmetry 2)

and therefore:

C[a,b,c,d] = C[b,a,d,c] or
C[i,j,k,l] = C[j,i,l,k] (implied symmetry)

If you include that in your code you'll get:

C = sym.MutableDenseNDimArray.zeros(3,3,3,3)
var = sym.symbols('C1:%d'%82)

ct = 0
for i in range(3):
    for j in range(3):
        for k in range(3):
            for l in range(3):
                if C[i,j,k,l] == 0:
                    C[i,j,k,l] = var[ct]
                    C[j,i,k,l] = var[ct]
                    C[i,j,l,k] = var[ct]
                    C[j,i,l,k] = var[ct]
                    ct += 1

And that should give you 36 different entries.

huangapple
  • 本文由 发表于 2023年8月4日 23:03:12
  • 转载请务必保留本文链接:https://go.coder-hub.com/76837125.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定