Json/weird column transformation JSON/奇怪的列转换

huangapple go评论81阅读模式
英文:

Json/weird column transformation

问题

我从Mongo数据库中收到了一些数据。这个表包含多个列,其中一些列的格式非常奇怪。

以下是该列/系列的一行示例:

'[{idEvento.$oid=63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]'

根据我有限的知识,这似乎不是一个 JSON。我不知道如何将每个“事件”(由 {} 项组成)转换成列表。

然后,如何基于每个事件的内容查询/筛选数据?我应该将事件展开为新行并将其作为字符串进行查询吗?

英文:

I am getting some data incoming from a mongo database. Such table contains several columns and some os such columns are composed of a very strange format.

Example of one line of the column/series

'[{idEvento.$oid=63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]'

This does not, at least for my shot knowledge, is a Json. I am struggling how to transform each "event" (composed of a {} item) into a list.

And after that, how could I query/filter data based on the containing of each event? Should I pd.explode the events into new lines and query as strings?

答案1

得分: 2

以下是您要翻译的代码部分:

import re
import json
import pandas as pd

s = "[{idEvento.$oid=63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]"

s = re.sub(r"([^ =,\[\]\{\}]+)=([^ =,\[\]\{\}]+)", r'"":""', s)
data = json.loads(s)

df = pd.DataFrame(data)
print(df)
def fn(x):
    x = re.sub(r"([^ =,\[\]\{\}]+)=([^ =,\[\]\{\}]+)", r'"":""', x)
    return json.loads(x)

out = df["col1"].apply(fn).explode().apply(pd.Series)
print(out)

希望这对您有所帮助。如果您需要任何进一步的帮助,请随时告诉我。

英文:

You can try to "convert" the string to proper Json (using re) and then use standard json.loads (Regex101 demo):

import re
import json
import pandas as pd


s = "[{idEvento.$oid=63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]"

s = re.sub(r"([^ =,\[\]\{\}]+)=([^ =,\[\]\{\}]+)", r'"\g<1>":"\g<2>"', s)
data = json.loads(s)

df = pd.DataFrame(data)
print(df)

Prints:

              idEvento.$oid dataHoraEvento.$date codigoTipoEvento mesAnoReferenciaContabilizacao                                           _class
0  63ffaec3cdc01e6352729bad        1677690003377                1                         032023                                              NaN
1  63ffb5c8cdc01e6352729bae        1677691800676                3                         032023                                              NaN
2  6405cc8711c78c20369b4033        1678090851560                8                         032023                                              NaN
3  6422b4c97e45dd75abb4f831        1679985307560                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
4  6422b4c97e45dd75abb4f832        1679985309584                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil

NOTE: This works for this example, but the pattern might need to be adjusted for real case.


EDIT: To apply to a dataframe:

Consider following dataframe:

df = pd.DataFrame(
    {
        "col1": [
            "[{idEvento.$oid=01_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]",
            "[{idEvento.$oid=02_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]",
            "[{idEvento.$oid=03_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]",
        ]
    }
)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               col1
0  [{idEvento.$oid=01_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]
1  [{idEvento.$oid=02_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]
2  [{idEvento.$oid=03_63ffaec3cdc01e6352729bad, dataHoraEvento.$date=1677690003377, codigoTipoEvento=1, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=63ffb5c8cdc01e6352729bae, dataHoraEvento.$date=1677691800676, codigoTipoEvento=3, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6405cc8711c78c20369b4033, dataHoraEvento.$date=1678090851560, codigoTipoEvento=8, mesAnoReferenciaContabilizacao=032023}, {idEvento.$oid=6422b4c97e45dd75abb4f831, dataHoraEvento.$date=1679985307560, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}, {idEvento.$oid=6422b4c97e45dd75abb4f832, dataHoraEvento.$date=1679985309584, codigoTipoEvento=6, mesAnoReferenciaContabilizacao=032023, _class=br.com.bb.rcp.model.vantagens.HistoricoContabil}]

Then:

def fn(x):
    x = re.sub(r"([^ =,\[\]\{\}]+)=([^ =,\[\]\{\}]+)", r'"\g<1>":"\g<2>"', x)
    return json.loads(x)

out = df["col1"].apply(fn).explode().apply(pd.Series)
print(out)

Prints:

                 idEvento.$oid dataHoraEvento.$date codigoTipoEvento mesAnoReferenciaContabilizacao                                           _class
0  01_63ffaec3cdc01e6352729bad        1677690003377                1                         032023                                              NaN
0     63ffb5c8cdc01e6352729bae        1677691800676                3                         032023                                              NaN
0     6405cc8711c78c20369b4033        1678090851560                8                         032023                                              NaN
0     6422b4c97e45dd75abb4f831        1679985307560                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
0     6422b4c97e45dd75abb4f832        1679985309584                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
1  02_63ffaec3cdc01e6352729bad        1677690003377                1                         032023                                              NaN
1     63ffb5c8cdc01e6352729bae        1677691800676                3                         032023                                              NaN
1     6405cc8711c78c20369b4033        1678090851560                8                         032023                                              NaN
1     6422b4c97e45dd75abb4f831        1679985307560                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
1     6422b4c97e45dd75abb4f832        1679985309584                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
2  03_63ffaec3cdc01e6352729bad        1677690003377                1                         032023                                              NaN
2     63ffb5c8cdc01e6352729bae        1677691800676                3                         032023                                              NaN
2     6405cc8711c78c20369b4033        1678090851560                8                         032023                                              NaN
2     6422b4c97e45dd75abb4f831        1679985307560                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil
2     6422b4c97e45dd75abb4f832        1679985309584                6                         032023  br.com.bb.rcp.model.vantagens.HistoricoContabil

huangapple
  • 本文由 发表于 2023年8月4日 02:58:48
  • 转载请务必保留本文链接:https://go.coder-hub.com/76830940.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定