Forall 和 exists 在 Coq 证明中。

huangapple go评论59阅读模式
英文:

Forall and exists in a Coq proof

问题

目前,在我的理论中,我有以下的公理:

Axiom context_existence : forall s t a,
  F a s -> Ps t a -> exists u, C u s t.

当我在证明中使用这个公理时,我会这样做:

pose proof (context_existence s t a Fas Psta) as (u & Cust).

然而,由于 a 在我的公理结论中没有被使用,我将公理重写如下:

Axiom context_existence : forall s t,
  (exists a, F a s /\ Ps t a) -> exists u, C u s t.

并且,由于 (exists a, F a s /\ Ps t a) 在我的理论中具有意义,我定义了一个谓词 Cb 如下:

Definition Cb s t := exists a, F a t /\ Ps s a.

然后,我将我的公理重写如下:

Axiom context_existence : forall s t,
  Cb t s -> exists u, C u s t.

然而,证明变得不那么直接。我会做类似于这样的操作:

pose proof (context_existence s t) as (u & Cust).
exists a; split; auto.

我知道如果只有 and 的话,我可以这样做:

pose proof (context_existence s t (conj Fas Psta)) as (u & Cust).

然而,由于存在 exists 子句,我不知道该如何处理它。是否有一种方法,类似于 conj 这样的函数,可以让我在一行中完成证明?

英文:

Currently, I have in my theory the following axiom:

Axiom context_existence : forall s t a,
  F a s -> Ps t a -> exists u, C u s t.

When i use this axiom in a proof, I do like this:

pose proof (context_existence s t a Fas Psta) as (u & Cust).

However, as a is not used in the conclusion of my axiom, I rewrite the axiom like this:

Axiom context_existence : forall s t,
  (exists a, F a s /\ Ps t a) -> exists u, C u s t.

And as (exists a, F a s /\ Ps t a) has a meaning in my theory, I defined a predicate Cb like this:

Definition Cb s t := exists a, F a t /\ Ps s a.

And I rewrite my axiom like this:

Axiom context_existence : forall s t,
  Cb t s -> exists u, C u s t.

However, the proof become less direct. I do something like this:

pose proof (context_existence s t) as (u & Cust).
exists a; split; auto.

I know that if it was just the and I could do something like:

pose proof (context_existence s t (conj Fas Psta)) as (u & Cust).

However, there is the exists clause and I don’t know how to deal with it. Is there a way, like a function such as conj, that would enable me to do my proof in one line?

答案1

得分: 2

不确定我完全理解你的问题,但我尝试翻译如下。
_/\_类似,exist在Coq中不是原始的,而是以如下方式定义的归纳谓词:

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
    ex_intro : forall x : A, P x -> exists y, P y.
ex_intro : forall [A : Type] (P : A -> Prop) (x : A), P x -> exists y, P y
Arguments ex [A]%type_scope P%function_scope
Arguments ex_intro [A]%type_scope P%function_scope x _

(这是使用Print ex.About ex_intro.打印的)
有一个名为ex_intro的构造函数,它接受:

  • 第一个隐式参数(从上下文中可推断出的类型A
  • 第二个参数:关于A的谓词P
  • 第三个参数:见证x : A
  • 第四个参数:P x的证明

因此,与conj一样,您可以手动构造exists公式的证明。

在这里,这会产生类似于以下的内容:

  pose proof (context_existence s t
    (ex_intro _ a (conj Fas Psta))) as (u & Cu).

注意,Coq足够聪明,可以从类型为(F a s /\ Ps t a)(Fas /\ Psta)的证明中推断出谓词(fun x => F x s /\ Ps x a),这相当有趣(我们没有提供显式谓词,而是留下了_)。同样的事情也可以用于a在这里。

英文:

Not sure I understand completely your question but here is my try.
As with _/\_, exist is not primitive in Coq, it is an inductive predicate defined this way :

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
    ex_intro : forall x : A, P x -> exists y, P y.
ex_intro : forall [A : Type] (P : A -> Prop) (x : A), P x -> exists y, P y
Arguments ex [A]%type_scope P%function_scope
Arguments ex_intro [A]%type_scope P%function_scope x _

(This is printed with Print ex. and About ex_intro.)
There is one constructor called ex_intro taking

  • a first implicit argument (the type A inferable from the context)
  • a second argument : a predicate P on A
  • a third argument : a witness x : A
  • a fourth argument : a proof of P x

So, as with conj, you may manually construct proofs of exists formulas.

Here, this gives something like this:

  pose proof (context_existence s t
    (ex_intro _ a (conj Fas Psta))) as (u & Cu).

Notice that Coq was smart enough to infer from the proof of (Fas /\ Psta) of type (F a s /\ Ps t a) the predicate (fun x => F x s /\ Ps x a) which is quite interesting (we did not provide an explicit predicate, but left _). The same could be done for a here.

huangapple
  • 本文由 发表于 2023年8月4日 01:48:03
  • 转载请务必保留本文链接:https://go.coder-hub.com/76830480.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定