使用geeglm()中的margins()在R中。

huangapple go评论70阅读模式
英文:

Using margins() with geeglm() in R

问题

我已经创建了一系列使用geeglm()函数的GEE模型。我想在exposure_1为正和负时计算主要结果的边际几率比。

我想绘制总体几率和两个边际几率比的森林图,以便进行比较。然而,margins()不接受geeglm()模型。

我一直没有找到另一种在margins中使用geeglm()输出的方法。我将不胜感激任何帮助。

以下是一个创建geeglm模型并将其转化为森林图的代码的通用版本:

library(ggplot2)
library(dplyr)

# 为了可重现性,设置随机种子
set.seed(13)

# 数据框中的行数
n <- 100

# 生成暴露和结果的虚构数据
exposure_1 <- sample(0:1, n, replace = TRUE)
exposure_2 <- sample(0:1, n, replace = TRUE)
exposure_3 <- sample(0:1, n, replace = TRUE)

# 生成主要结果的虚构数据(假设是二元结果)
# 如果需要,可以基于某种逻辑或模型生成结果
primary_outcome <- rbinom(n, 1, 0.3 + 0.2 * exposure_1 + 0.1 * exposure_2 - 0.1 * exposure_3)

# 生成社区/分组变量的虚构数据
enr_community <- sample(letters[1:5], n, replace = TRUE)

# 合并生成的数据以创建数据框
df <- data.frame(
  exposure_1 = exposure_1,
  exposure_2 = exposure_2,
  exposure_3 = exposure_3,
  primary_outcome = primary_outcome,
  enr_community = enr_community
)

logit_model_1 <- geeglm(formula = primary_outcome ~ exposure_1*exposure_2 + exposure_3 , family = binomial, id = enr_community, corstr = "independence", data = df)

lcf <- logit_model_1 %>%
  tidy(exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) %>%
  mutate(model = "Main Result") %>%
  mutate(exposure = "Exposure 1") %>%
  filter(term == "exposure_1")

lcftable <- lcf |>
  # 对估计值和95%置信区间四舍五入到小数点后2位,以满足期刊要求
  mutate(across(
    c(estimate, conf.low, conf.high, p.value),
    ~ str_pad(
      round(.x,2),
      width = 4,
      pad = "0",
      side = "right"
    ))) %>%
      mutate(estimate = case_when(
        estimate == "1000" ~ "1.00",
        TRUE ~ estimate
  )) %>%
  mutate(conf.low = case_when(
        conf.low == "1000" ~ "1.00",
        TRUE ~ conf.low
  )) %>%
  mutate(conf.high = case_when(
        conf.high == "2000" ~ "2.00",
        TRUE ~ conf.high
  )) %>%
  mutate(model = fct_rev(fct_relevel(model, "Model")))

lcftable <- lcftable %>%
  # 转换回字符
  mutate(estimate = format(estimate, n.small = 3),
    conf.low = format(conf.low, n.small = 3),
    conf.high = format(conf.high, n.small = 3),
    estimate_lab = paste0(estimate, " (", as.character(conf.low), " -", conf.high, ")")) |>
     mutate(p.value = as.numeric(p.value)) %>%
  # 四舍五入p值到两位小数,除非p < 0.001
  mutate(p.value = case_when(
    p.value < .001 ~ "<0.001",
    round(p.value, 2) == .05 ~ as.character(round(p.value,3)),
    p.value < .01 ~ str_pad( # 如果小于0.01,则再多保留一位小数
      as.character(round(p.value, 3)),
      width = 4,
      pad = "0",
      side = "right"
    ),
    p.value > 0.995 ~ "1.00",
    TRUE ~ str_pad( # 否则只四舍五入到2位小数,并填充字符串以使0.20读作0.20
      as.character(round(p.value, 2)),
      width = 4,
      pad = "0",
      side = "right"
    ))) %>%
   mutate(estimate = as.numeric(estimate),
    conf.low = as.numeric(conf.low),
    conf.high = as.numeric(conf.high))

lcfplot1 <- lcftable %>%
  ggplot(mapping = aes(x = estimate, xmin = conf.low, xmax = conf.high, y = model)) + #y = model rather than term
  geom_pointrange() +
 # scale_x_continuous(breaks = c(0, 1.0, 1.5, 2.0)) + #trans = scales::pseudo_log_trans(base = 10)
  geom_vline(xintercept = 1) +
  geom_point(size = 1.0) +
# 调整分面网格
  facet_wrap(exposure~., ncol = 1, scale = "free_y") +
  xlab("Incident Odds Ratio, IOR (95% Confidence Interval)") +
  ggtitle("Associations between exposures and outcome") +
  geom_text(aes(x = 3.5, label = estimate_lab), hjust = -0.5, size = 3) +
  geom_text(aes(x = 2.5, label = p.value), hjust = -3.5, size = 3) +
  coord_cartesian(xlim = c(-0.1, 7.0)) +
  scale_x_continuous(trans = "pseudo_log", breaks = c(-1.0, 0, 1.0, 2.0, 5.0)) +
  theme(panel.background = element_blank(),
        panel.spacing = unit(1, "lines"),
        panel.border = element_rect(fill = NA, color = "white"),
        strip.background = element_rect(colour="white", fill="white"),
        strip.placement = "outside",
        text = element_text(size = 12),
        strip.text = element_text(face = "bold.italic", size = 11, hjust = 0.33), #element_blank(),
        plot.title = element_text(face = "bold", size = 13, hjust =

<details>
<summary>英文:</summary>

I have created a series of GEE models using geeglm(). I would like to calculate the marginal odds ratios for primary_outcome when exposure_1 is positive and negative.

I would like to plot the overall odds and the two marginal odds ratios sequentially in a forest plot to allow for comparison. However, margins() does not accept a geeglm() model.

I have not been able to figure out another way to use geeglm() output with margins. I would appreciate any help.

Here is a generic version of the code which creates a geeglm model and shows how I am translating it into a forest plot

   

 

    library(ggplot2)
    library(dplyr)
        
    # Set a random seed for reproducibility
    set.seed(13)
    
    # Number of rows in the dataframe
    n &lt;- 100
    
    # Generate made-up data for exposures and outcome
    exposure_1 &lt;- sample(0:1, n, replace = TRUE)
    exposure_2 &lt;- sample(0:1, n, replace = TRUE)
    exposure_3 &lt;- sample(0:1, n, replace = TRUE)
    
    # Generate made-up data for the primary outcome (assuming a binary outcome)
    # The outcome could be generated based on some logic or model if needed
    primary_outcome &lt;- rbinom(n, 1, 0.3 + 0.2 * exposure_1 + 0.1 * exposure_2 - 0.1 * exposure_3)
    
    # Generate made-up data for the community/grouping variable
    enr_community &lt;- sample(letters[1:5], n, replace = TRUE)
    
    # Combine the generated data to create the dataframe
    df &lt;- data.frame(
      exposure_1 = exposure_1,
      exposure_2 = exposure_2,
      exposure_3 = exposure_3,
      primary_outcome = primary_outcome,
      enr_community = enr_community
    )
    
    logit_model_1 &lt;- geeglm(formula = primary_outcome ~ exposure_1*exposure_2 + exposure_3 , family = binomial, id = enr_community, corstr = &quot;independence&quot;, data = df)
    
    lcf &lt;- logit_model_1 %&gt;%
      tidy(exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) %&gt;%
      mutate(model = &quot;Main Result&quot;) %&gt;%
      mutate(exposure = &quot;Exposure 1&quot;) %&gt;%
      filter(term == &quot;exposure_1&quot;) 
    
    lcftable &lt;- lcf |&gt;
      # round estimates and 95% CIs to 2 decimal places for journal specifications
      mutate(across(
        c(estimate, conf.low, conf.high, p.value),
        ~ str_pad(
          round(.x,2),
          width = 4,
          pad = &quot;0&quot;,
          side = &quot;right&quot;
        ))) %&gt;%
          mutate(estimate = case_when(
            estimate == &quot;1000&quot; ~ &quot;1.00&quot;,
            TRUE ~ estimate
      )) %&gt;%
      mutate(conf.low = case_when(
            conf.low == &quot;1000&quot; ~ &quot;1.00&quot;,
            TRUE ~ conf.low
      )) %&gt;%
      mutate(conf.high = case_when(
            conf.high == &quot;2000&quot; ~ &quot;2.00&quot;,
            TRUE ~ conf.high
      )) %&gt;%
      mutate(model = fct_rev(fct_relevel(model, &quot;Model&quot;)))
    
    lcftable &lt;- lcftable %&gt;%
      #convert back to characters
      mutate(estimate = format(estimate, n.small = 3),
        conf.low = format(conf.low, n.small = 3),
        conf.high = format(conf.high, n.small = 3),
        estimate_lab = paste0(estimate, &quot; (&quot;, as.character(conf.low), &quot; -&quot;, conf.high, &quot;)&quot;)) |&gt;
         mutate(p.value = as.numeric(p.value)) %&gt;%
      # round p-values to two decimal places, except in cases where p &lt; .001
      mutate(p.value = case_when(
        p.value &lt; .001 ~ &quot;&lt;0.001&quot;,
        round(p.value, 2) == .05 ~ as.character(round(p.value,3)),
        p.value &lt; .01 ~ str_pad( # if less than .01, go one more decimal place
          as.character(round(p.value, 3)),
          width = 4,
          pad = &quot;0&quot;,
          side = &quot;right&quot;
        ),
        p.value &gt; 0.995 ~ &quot;1.00&quot;,
        TRUE ~ str_pad( # otherwise just round to 2 decimal places and pad string so that .2 reads as 0.20
          as.character(round(p.value, 2)),
          width = 4,
          pad = &quot;0&quot;,
          side = &quot;right&quot;
        ))) %&gt;%
       mutate(estimate = as.numeric(estimate),
        conf.low = as.numeric(conf.low),
        conf.high = as.numeric(conf.high))
    
    lcfplot1 &lt;- lcftable %&gt;%
      ggplot(mapping = aes(x = estimate, xmin = conf.low, xmax = conf.high, y = model)) + #y = model rather than term
      geom_pointrange() +
     # scale_x_continuous(breaks = c(0, 1.0, 1.5, 2.0)) + #trans = scales::pseudo_log_trans(base = 10)
      geom_vline(xintercept = 1) +
      geom_point(size = 1.0) +
    #adjust facet grid
      facet_wrap(exposure~., ncol = 1, scale = &quot;free_y&quot;) +
      xlab(&quot;Incident Odds Ratio, IOR (95% Confidence Interval)&quot;) +
      ggtitle(&quot;Associations between exposures and outcome&quot;) +
      geom_text(aes(x = 3.5, label = estimate_lab), hjust = -0.5, size = 3) +
      geom_text(aes(x = 2.5, label = p.value), hjust = -3.5, size = 3) +
      coord_cartesian(xlim = c(-0.1, 7.0)) +
      scale_x_continuous(trans = &quot;pseudo_log&quot;, breaks = c(-1.0, 0, 1.0, 2.0, 5.0)) +
      theme(panel.background = element_blank(),
            panel.spacing = unit(1, &quot;lines&quot;),
            panel.border = element_rect(fill = NA, color = &quot;white&quot;),
            strip.background = element_rect(colour=&quot;white&quot;, fill=&quot;white&quot;),
            strip.placement = &quot;outside&quot;,
            text = element_text(size = 12),
            strip.text = element_text(face = &quot;bold.italic&quot;, size = 11, hjust = 0.33), #element_blank(),
            plot.title = element_text(face = &quot;bold&quot;, size = 13, hjust = -11, vjust = 4),
            axis.title.x = element_text(size = 10, vjust = -1, hjust = 0.05),
            axis.title.y = element_blank(),
            panel.grid.major.x = element_line(color = &quot;#D3D3D3&quot;,
                                      size = 0.3, linetype = 2),
            plot.margin = unit(c(1, 3, 0.5, 0.5), &quot;inches&quot;)) +
      geom_errorbarh(height = 0)

</details>


# 答案1
**得分**: 2

`margins`软件包已经有一段时间没有更新,基本上处于维护模式。我建议转向更新的、通常更好的`marginaleffects`软件包。Vincent编写了一本出色的指南书:https://vincentarelbundock.github.io/marginaleffects/

我没有尝试过,但我可以看到`geeglm`模型是受支持的对象类别。

<details>
<summary>英文:</summary>

The `margins` package has not been updated for some time and is basically in maintenance mode. I would suggest moving over to the newer and generally much better `marginaleffects` package. Vincent has put together a phenomenal guidebook: https://vincentarelbundock.github.io/marginaleffects/

I have not tried it, but I can see that geeglm models are a supported object class.

</details>



huangapple
  • 本文由 发表于 2023年7月31日 23:47:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/76805201.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定