计算多个GeoDataFrame条目的面积。

huangapple go评论79阅读模式
英文:

Compute areas for multiple entries of GeoDataFrame

问题

I have some working code that computes the area of a city by name:

def get_area_of_city(city_name):
    # Fetch the geodataframe for the specified city
    city_gdf = ox.geocoder.geocode_to_gdf(city_name, which_result=1)

    # Access the geometry (polygon) of the city from the geodataframe
    city_polygon = city_gdf['geometry']

    # Get the latitude and longitude of the city (centroid of the polygon)
    city_latitude, city_longitude = city_polygon.geometry.centroid.y, city_polygon.geometry.centroid.x

    # Define the Cylindrical Equal Area (CEA) projection centered at the city
    cea_projection = f"+proj=cea +lon_0={city_longitude} +lat_ts={city_latitude} +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs"

    # Reproject the polygon to the CEA projection
    city_polygon_cea = city_polygon.to_crs(cea_projection)

    # Compute the area of the polygon in square meters
    area_square_meters = city_polygon_cea.area

    # You can also convert the area to square kilometers if needed
    area_square_kilometers = area_square_meters / 1000000.0

    return area_square_kilometers

Now, I want to adapt this code such that it works with any GeoDataFrame that contains multiple cities. This code should be able to construct a projection for each city and apply it to the polygon to get the area. How can I do this? I currently have the following code:

def get_area_of_geodataframe(gdf):
    # Get a copy of the original GeoDataFrame
    gdf_copy = gdf.copy()

    # Get the latitude and longitude of the centroid of all geometries in the GeoDataFrame
    gdf_copy['city_latitude'] = gdf_copy.geometry.centroid.y
    gdf_copy['city_longitude'] = gdf_copy.geometry.centroid.x

    # Define the Cylindrical Equal Area (CEA) projection for each geometry
    gdf_copy['cea_projection'] = gdf_copy.apply(lambda row: f"+proj=cea +lon_0={row['city_longitude']} +lat_ts={row['city_latitude']} +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs", axis=1)

    # Reproject each geometry to the CEA projection
    gdf_copy['city_polygon_cea'] = gdf_copy.apply(lambda row: row['geometry'].to_crs(row['cea_projection']), axis=1)

    # Compute the area of each geometry in square meters
    gdf_copy['area_square_meters'] = gdf_copy['city_polygon_cea'].area

    # Convert the area to square kilometers
    gdf_copy['area_square_kilometers'] = gdf_copy['area_square_meters'] / 1000000.0

    # Drop the intermediate columns and return the modified GeoDataFrame
    gdf_copy = gdf_copy.drop(columns=['city_latitude', 'city_longitude', 'cea_projection', 'city_polygon_cea'])
    return gdf_copy

However, the error I receive is AttributeError: 'Series' object has no attribute 'to_crs' when I call row['geometry'].to_crs().

How do I have to adapt my code?

I tried to use the above code, but I get an error.

英文:

I have some working code that computes the area of a city by name:

def get_area_of_city(city_name):
    # Fetch the geodataframe for the specified city
    city_gdf = ox.geocoder.geocode_to_gdf(city_name, which_result=1)

    # Access the geometry (polygon) of the city from the geodataframe
    city_polygon = city_gdf['geometry']

    # Get the latitude and longitude of the city (centroid of the polygon)
    city_latitude, city_longitude = city_polygon.geometry.centroid.y, city_polygon.geometry.centroid.x

    # Define the Cylindrical Equal Area (CEA) projection centered at the city
    cea_projection = f"+proj=cea +lon_0={city_longitude} +lat_ts={city_latitude} +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs"

    # Reproject the polygon to the CEA projection
    city_polygon_cea = city_polygon.to_crs(cea_projection)

    # Compute the area of the polygon in square meters
    area_square_meters = city_polygon_cea.area

    # You can also convert the area to square kilometers if needed
    area_square_kilometers = area_square_meters / 1000000.0
    
    return area_square_kilometers

Now, I want to adapt this code such that it works with any GeoDataFrame that contains multiple cities. This code should be able to construct a projection for each city and apply it to the polygon to get the area. How can I do this? I currently have the following code:


def get_area_of_geodataframe(gdf):
    # Get a copy of the original GeoDataFrame
    gdf_copy = gdf.copy()

    # Get the latitude and longitude of the centroid of all geometries in the GeoDataFrame
    gdf_copy['city_latitude'] = gdf_copy.geometry.centroid.y
    gdf_copy['city_longitude'] = gdf_copy.geometry.centroid.x

    # Define the Cylindrical Equal Area (CEA) projection for each geometry
    gdf_copy['cea_projection'] = gdf_copy.apply(lambda row: f"+proj=cea +lon_0={row['city_longitude']} +lat_ts={row['city_latitude']} +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs", axis=1)

    # Reproject each geometry to the CEA projection
    gdf_copy['city_polygon_cea'] = gdf_copy.apply(lambda row: row.to_crs(row['cea_projection']), axis=1)

    # Compute the area of each geometry in square meters
    gdf_copy['area_square_meters'] = gdf_copy['city_polygon_cea'].area

    # Convert the area to square kilometers
    gdf_copy['area_square_kilometers'] = gdf_copy['area_square_meters'] / 1000000.0

    # Drop the intermediate columns and return the modified GeoDataFrame
    gdf_copy = gdf_copy.drop(columns=['city_latitude', 'city_longitude', 'cea_projection', 'city_polygon_cea'])
    return gdf_copy

However, the error I revieve is AttributeError: 'Series' object has no attribute 'to_crs' when I call row.to_crs().

How do I have to adapt my code?

I tried to use the above code, but I get an error.

答案1

得分: 1

为什么它不起作用?

出乎意料还是不出乎意料,当你提取 geopandas.GeoDataFrame 的单行时,它最终变成了 pandas.Series,因此它没有 to_crs() 方法。

type(gdf_copy.iloc[0])

# 返回 <class 'pandas.core.series.Series'>

关于是否应该返回 pandas.Series,似乎存在一场辩论这里这个答案提供了一个有趣的索引技巧(注意双方括号):

type(gdf_copy.iloc[[0]])

# 返回 <class 'geopandas.geodataframe.GeoDataFrame'>

不过,我认为在这里我们不能使用这个技巧,因为 apply() 让我们可以直接处理已经是 pandas.Series 的数据。

如果你真的想这么做,你可能可以通过直接使用 shapelypyproj 来实现。

为什么这也许不是一个好主意?

如果它按照你尝试的方式工作,你最终会得到带有不同坐标参考系统 (CRS) 的 shapely 对象,而 geopandas 不支持在单个几何列中具有不同的 CRS。尽管如此,你可以具有不同 CRS 的不同几何列,尽管只有一个被视为 GeoDataFrame 的 几何。

建议的方法...

为什么不重用你的有效的 get_area_of_city(city_name) 函数呢?

df = pd.DataFrame({'city': ['Lyon', 'Paris', 'Marseille']})
df['area_square_kilometers'] = df.apply(lambda row: get_area_of_city(row['city']), axis=1)

# 结果:
#        city  area_square_kilometers
# 0       Lyon               47.985400
# 1      Paris              105.390441
# 2  Marseille              242.129201

希望这对你有所帮助!

英文:

Why is it not working?

Surprisingly or not, when you take a single row of a geopandas.GeoDataFrame, it ends up being a pandas.Series, thus it does not have the method to_crs().

type(gdf_copy.iloc[0])

# returns &lt;class &#39;pandas.core.series.Series&#39;&gt;

There seems to be a debate here on whether or not getting back a pandas.Series should be the expected behavior. This answer provides an interesting indexing trick (notice the double square-brackets):

type(gdf_copy.iloc[[0]])

# returns &lt;class &#39;geopandas.geodataframe.GeoDataFrame&#39;&gt;

I don't think we can make use of that trick here though, as apply() let us work with what is already a pandas.Series.

Should you really want to go that way, you could probably accomplish that by working directly with shapely and pyproj.

Why might it not be a good idea anyway?

Had it worked the way you were trying to, you would have ended up with shapely objects with different CRS in a single geometry column, which geopandas does not support. You can have different geometry columns with different CRS though, despite the fact that only one is considered as the main geometry of the GeoDataFrame.

Suggested way to go...

Why not reuse your nice and working get_area_of_city(city_name) function?

df = pd.DataFrame({&#39;city&#39;: [&#39;Lyon&#39;, &#39;Paris&#39;, &#39;Marseille&#39;]})
df[&#39;area_square_kilometers&#39;] = df.apply(lambda row: get_area_of_city(row[&#39;city&#39;]), axis=1)

#        city  area_square_kilometers
# 0       Lyon               47.985400
# 1      Paris              105.390441
# 2  Marseille              242.129201

Hope this helps!

huangapple
  • 本文由 发表于 2023年7月27日 18:30:02
  • 转载请务必保留本文链接:https://go.coder-hub.com/76778847.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定