将数据框从矩阵格式转换

huangapple go评论80阅读模式
英文:

Converting a dataframe from a matrix format

问题

我有一个看起来像这样的数据框:

    1    2    3
1   1    4    2
2   4    1    8
3   2    8    1

我试图将其转换为以下格式的数据框:

Comparison  Value
1 v 1       1
1 v 2       4
1 v 3       2
2 v 3       8

可复现的数据框:

{1: {1: 1.0, 2: 4, 3: 2}, 2: {1: 4, 2: 1.0, 3: 8}, 3: {1: 2, 2: 8, 3: 1.0}}
英文:

I have a dataframe that looks like this:

    1    2    3
1   1    4    2
2   4    1    8
3   2    8    1

I am trying to convert it to a dataframe with this format:

Comparison  Value
1 v 1       1
1 v 2       4
1 v 3       2
2 v 3       8

Reproducible dataframe:

{1: {1: 1.0, 2: 4, 3: 2}, 2: {1: 4, 2: 1.0, 3: 8}, 3: {1: 2, 2: 8, 3: 1.0}}

答案1

得分: 0

你可以这样做:

import pandas as pd

df = pd.DataFrame({1: {1: 1.0, 2: 4, 3: 2}, 2: {1: 4, 2: 1.0, 3: 8}, 3: {1: 2, 2: 8, 3: 1.0}})

# 用于保存新的“矩阵”格式的字典
matdata = {"Comparison": [], "Value": []}

# 遍历行和列
for i in range(1, 4):
    for j in range(1, 4):
        matdata["Comparison"].append(f"{i} v {j}")
        matdata["Value"].append(df.loc[i, j])

newdf = pd.DataFrame(matdata)

print(newdf)

  Comparison  Value
0      1 v 1    1.0
1      1 v 2    4.0
2      1 v 3    2.0
3      2 v 1    4.0
4      2 v 2    1.0
5      2 v 3    8.0
6      3 v 1    2.0
7      3 v 2    8.0
8      3 v 3    1.0
英文:

You could do something like:

import pandas as pd

df = pd.DataFrame({1: {1: 1.0, 2: 4, 3: 2}, 2: {1: 4, 2: 1.0, 3: 8}, 3: {1: 2, 2: 8, 3: 1.0}})

# dictionary to hold new "matrix" format
matdata = {"Comparison": [], "Value": []}

# loop over rows and columns
for i in range(1, 4):
    for j in range(1, 4):
        matdata["Comparison"].append(f"{i} v {j}")
        matdata["Value"].append(df.loc[i, j])

newdf = pd.DataFrame(matdata)

print(newdf)

  Comparison  Value
0      1 v 1    1.0
1      1 v 2    4.0
2      1 v 3    2.0
3      2 v 1    4.0
4      2 v 2    1.0
5      2 v 3    8.0
6      3 v 1    2.0
7      3 v 2    8.0
8      3 v 3    1.0

答案2

得分: 0

使用以下简单方法与pandas.DataFrame.at一起使用:

pd.DataFrame([(f'{c} v {i}', df.at[i, c]) for c in df.columns for i in df.index], 
              columns=['Comparison', 'Value'])

  Comparison  Value
0      1 v 1    1.0
1      1 v 2    4.0
2      1 v 3    2.0
3      2 v 1    4.0
4      2 v 2    1.0
5      2 v 3    8.0
6      3 v 1    2.0
7      3 v 2    8.0
8      3 v 3    1.0
英文:

Use the following simple approach with pandas.DataFrame.at:

pd.DataFrame([(f'{c} v {i}', df.at[i, c]) for c in df.columns for i in df.index], 
              columns=['Comparison', 'Value'])

  Comparison  Value
0      1 v 1    1.0
1      1 v 2    4.0
2      1 v 3    2.0
3      2 v 1    4.0
4      2 v 2    1.0
5      2 v 3    8.0
6      3 v 1    2.0
7      3 v 2    8.0
8      3 v 3    1.0

huangapple
  • 本文由 发表于 2023年7月27日 16:49:34
  • 转载请务必保留本文链接:https://go.coder-hub.com/76778044.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定